2,293 research outputs found

    Perspectives on Ageing: A Young-Earth Creation Diversification Model

    Get PDF
    The AGEing model proposes that intrabaraminic diversification occurred because of the action of transposable and repetitive elements, called Altruistic Genetic Elements (AGEs). Since the model was proposed in 1999, much new evidence has come to light, some of which supports the model and some of which calls for a significant revision of the model. Evidence of AGE/gene association, AGE horizontal transfer, and AGE-induced genetic changes all support the original AGEing model. Evidence of extensive genomic rearrangement, bacterial plasmids, and AGE transposition control requires substantial modification of the AGEing model. A new model of diversification based on these evidences will be introduced and explained

    A Survey of Cenozoic Mammal Baramins

    Get PDF
    To expand the sample of statistical baraminology studies, we identified 80 datasets sampled from 29 mammalian orders, from which we performed 82 separate analyses. We analyzed each dataset with standard statistical baraminology techniques: baraminic distance correlation (BDC) and multidimensional scaling (MDS). We evaluated the BDC and MDS results from each character set for potential continuity and discontinuity. We found evidence of holobaramins in 57 of the 82 analyses (69.5%). Of the remaining character sets, three showed evidence of monobaramins and 22 (26.8%) were inconclusive. These results are consistent with previous efforts to test the discontinuity hypothesis, which found that a majority of character sets showed evidence of holobaramins. Tentative holobaramins represent 57 taxonomic groups, many of which have not been previously analyzed by statistical baraminology. Together with previously identified holobaramins, this study increases the number of putative mammal holobaramins to 64

    Bacteriophages as Beneficial Regulators of the Mammalian Microbiome

    Get PDF
    Much of the research on viruses has concentrated on their disease causing ability. The creation model biomatrix theory predicts that viruses play a beneficial role in cells and organisms. In this report we present a new theory which proposes that mammalian phages (bacteriophages), the most abundant organism associated with mammals, guard and regulate growth of the mammalian microbiome. We base this theory on nearly a century of published evidence that demonstrates that phage can insert into the bacterial genome and cover the surface of bacteria. We propose that this “cloaking” of the bacterial cell surface is an elegant mechanism whereby the normal flora bacteria are protected from immune detection and pathogenic bacteria can be directly lysed by the same phage. Additionally, both phage genome integration and cloaking can be used to prevent normal flora bacteria from conversion to a pathogenic state. Further support for the phage cloaking aspect of our theory has been demonstrated in recent studies which show that phage proteins bind specifically to microbial-associated molecular patterns (MAMPs), which are known to be the major ligands that activate the mammalian immune system. Although these phenomena have been documented separately over decades, we postulate for the first time that these functions work together to promote the integrity of the mammalian microbiome

    Fossil Equidae: A Monobaraminic, Stratomorphic Series

    Get PDF
    We performed a baraminological analysis on nineteen fossil equid species using a morphological dataset obtained from the published literature. From a baraminic distance correlation analysis, we found evidence that all nineteen species belong to a single monobaramin. The 3D ANOPA distribution revealed a linear trajectory of equid species with sixteen species in the main axis and three species in a side-branch. The order of species in the ANOPA trajectory closely corresponds to the order of stratigraphic appearance, indicating that the fossil equids form a true stratomorphic series. We interpret the strata as post-Flood, concluding that the equid fossil record evidences a rapid, post-Flood, intrabaraminic diversification

    Not all campaigns are created equal: Temporal and spatial variability in constituency campaign spending effects in Great Britain, 1997–2015

    Get PDF
    Existing research on constituency campaigning focuses heavily on studies of single national elections, and cross-temporal variability in campaign effects is rarely addressed. Similarly, campaign effects for a party at a given election are assumed to be uniform across the territory of the relevant polity. But both assumptions are questionable. In this paper, we analyse constituency campaign spending effects at British General Elections from 1997 to 2015 to explore their stability across time and space. In doing so, we also evaluate the empirical utility of some of the arguments theorised by Fisher et al. (2011) to explain campaign variability. Our results suggest parts of the theory, while attractive, do not adequately account for the observed variability

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R ~ 22,500), high signal-to-noise ratio (>100), infrared (1.51–1.70 ÎŒm) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available
    • 

    corecore