7,242 research outputs found

    Taxation of Retirement Provision

    Get PDF

    Evolution of the flow field in decaying active regions, Transition from a moat flow to a supergranular flow

    Full text link
    We investigate the evolution of the horizontal flow field around sunspots during their decay by analysing its extension and horizontal velocity around eight spots using SDO/HMI Doppler maps. By assuming a radially symmetrical flow field, the applied analysis method determines the radial dependence of the azimuthally averaged flow field. For comparison, we studied the flow in supergranules using the same technique. All investigated, fully fledged sunspots are surrounded by a flow field whose horizontal velocity profile decreases continuously from 881 m s−1^{-1} at 1.1 Mm off the spot boundary, down to 199 m s−1^{-1} at a mean distance of 11.9 Mm to that boundary. Once the penumbra is fully dissolved, however, the velocity profile of the flow changes: The horizontal velocity increases with increasing distance to the spot boundary until a maximum value of about 398 m s−1^{-1} is reached. Then, the horizontal velocity decreases for farther distances to the spot boundary. In supergranules, the horizontal velocity increases with increasing distance to their centre up to a mean maximum velocity of 355 m s−1^{-1}. For larger distances, the horizontal velocity decreases. We thus find that the velocity profile of naked sunspots resembles that of supergranular flows. The evolution of the flow field around individual sunspots is influenced by the way the sunspot decays and by the interplay with the surrounding flow areas. Observations of the flow around eight decaying sunspots suggest that as long as penumbrae are present, sunspots with their moat cell are embedded in network cells. The disappearance of the penumbra (and consequently the moat flow) and the competing surrounding supergranular cells, both have a significant role in the evolution of the flow field: The moat cell transforms into a supergranule, which hosts the remaining naked spot.Comment: accepted for publication in A&A, 11 pages, 6 figures, 3 tables; appendix with 9 figures and 8 online movie

    Engineering tests of the C-141 telescope

    Get PDF
    Data on image quality, chopper performance, and the closed-loop operation of the 91 cm telescope of the Kuiper Airborne Observatory which were obtained in September 1977 are presented

    Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo

    Get PDF
    We have used hypomorphic and null tailless (tll) alleles to carry out a detailed analysis of the effects of the lack of tll gene activity on anterior and posterior regions of the embryo. The arrangement of tll alleles into a continuous series clarifies the relationship between the anterior and posterior functions of the tll gene and indicates that there is a graded sensitivity of anterior and posterior structures to a decrease in tll gene activity. With the deletion of both anterior and posterior pattern domains in tll null embryos, there is a poleward expansion of the remaining pattern. Using anti-horseradish peroxidase staining, we show that the formation of the embryonic brain requires tll. A phenotypic and genetic study of other pattern mutants places the tll gene within the hierarchy of maternal and zygotic genes required for the formation of the normal body pattern. Analysis of mutants doubly deficient in tll and maternal terminal genes is consistent with the idea that these genes act together in a common pathway to establish the domains at opposite ends of the embryo. We propose that tll establishes anterior and posterior subdomains (acron and tail regions, respectively) within the larger pattern regions affected by the maternal terminal genes

    Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome \u3cem\u3ec\u3c/em\u3e Oxidase Complex

    Get PDF
    The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1(complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins
    • …
    corecore