249 research outputs found

    Simplified approach to the application of the geometric collective model

    Full text link
    The predictions of the geometric collective model (GCM) for different sets of Hamiltonian parameter values are related by analytic scaling relations. For the quartic truncated form of the GCM -- which describes harmonic oscillator, rotor, deformed gamma-soft, and intermediate transitional structures -- these relations are applied to reduce the effective number of model parameters from four to two. Analytic estimates of the dependence of the model predictions upon these parameters are derived. Numerical predictions over the entire parameter space are compactly summarized in two-dimensional contour plots. The results considerably simplify the application of the GCM, allowing the parameters relevant to a given nucleus to be deduced essentially by inspection. A precomputed mesh of calculations covering this parameter space and an associated computer code for extracting observable values are made available through the Electronic Physics Auxiliary Publication Service. For illustration, the nucleus 102Pd is considered.Comment: RevTeX 4, 15 pages, to be published in Phys. Rev.

    Solvable models for the gamma deformation having X(5) as limiting symmetry. Removing some drawbacks of the existent descriptions

    Get PDF
    Two solvable Hamiltonians for describing the dynamic gamma deformation, are proposed. The limiting case of each of them is the X(5) Hamiltonian. Analytical solutions for both energies and wave functions, which are periodic in γ\gamma, are presented in terms of spheroidal and Mathieu functions, respectively. Moreover, the gamma depending factors of the transition operator can be treated.Comment: four two column pages, 1 figur

    Description of even-even triaxial Nuclei within the Coherent State and the Triaxial Rotation-Vibration Models

    Get PDF
    The coherent state model (CSM) and the triaxial rotation-vibration model (TRVM) are alternatively used to describe the ground, gamma and beta bands of 228Th. CSM is also applied to the nuclei 126Xe and 130Ba, which were recently considered in TRVM. The two models are compared with respect to both their underlying assumptions and to their predicted results for energy levels and E2 branching ratios. Both models describe energies and quadrupole transitions of 228Th equally well and in good agreement with experiment, if the 03+_3^+ level at 1120 keV is interpreted as the head of the beta band. The other two 0+^+ levels at 832 and 939 keV are most likely not of a pure quadrupole vibration nature as has already been pointed out in the literature.Comment: 31 pages, RevTeX, 6 figure

    Construction of SO(5)>SO(3) spherical harmonics and Clebsch-Gordan coefficients

    Full text link
    The SO(5)>SO(3) spherical harmonics form a natural basis for expansion of nuclear collective model angular wave functions. They underlie the recently-proposed algebraic method for diagonalization of the nuclear collective model Hamiltonian in an SU(1,1)xSO(5) basis. We present a computer code for explicit construction of the SO(5)>SO(3) spherical harmonics and use them to compute the Clebsch-Gordan coefficients needed for collective model calculations in an SO(3)-coupled basis. With these Clebsch-Gordan coefficients it becomes possible to compute the matrix elements of collective model observables by purely algebraic methods.Comment: LaTeX (RevTeX), 15 pages; to be published in Computer Phys. Comm

    Effective theory for deformed nuclei

    Full text link
    Techniques from effective field theory are applied to nuclear rotation. This approach exploits the spontaneous breaking of rotational symmetry and the separation of scale between low-energy Nambu-Goldstone rotational modes and high-energy vibrational and nucleonic degrees of freedom. A power counting is established and the Hamiltonian is constructed at next-to-leading order

    Collective quadrupole excitations in the 50<Z,N<82 nuclei with the generalized Bohr Hamiltonian

    Full text link
    The generalized Bohr Hamiltonian is applied to a description of low-lying collective excitations in even-even isotopes of Te, Xe, Ba, Ce, Nd and Sm. The collective potential and inertial functions are determined by means of the Strutinsky method and the cranking model, respectively. A shell-dependent parametrization of the Nilsson potential is used. An approximate particle-number projection is performed in treatment of pairing correlations. The effect of coupling with the pairing vibrations is taken into account approximately when determining the inertial functions. The calculation does not contain any free parameter.Comment: Latex2e source, 20 pages, 14 figures in EPS format, tar gzipped fil

    Phase Transitions in Finite Nuclei and the Integer Nucleon Number Problem

    Full text link
    The study of spherical-deformed ground--state phase transitions in finite nuclei as a function of N and Z is hindered by the discrete values of the nucleon number. A resolution of the integer nucleon number problem, and evidence relating to phase transitions in finite nuclei, are discussed from the experimental point of view and interpreted within the framework of the interacting boson model.Comment: 8 pages Latex + 8 figs (postscript). In Phys Rev Lett, June 199

    Solutions of the Bohr hamiltonian, a compendium

    Full text link
    The Bohr hamiltonian, also called collective hamiltonian, is one of the cornerstone of nuclear physics and a wealth of solutions (analytic or approximated) of the associated eigenvalue equation have been proposed over more than half a century (confining ourselves to the quadrupole degree of freedom). Each particular solution is associated with a peculiar form for the V(β,γ)V(\beta,\gamma) potential. The large number and the different details of the mathematical derivation of these solutions, as well as their increased and renewed importance for nuclear structure and spectroscopy, demand a thorough discussion. It is the aim of the present monograph to present in detail all the known solutions in γ\gamma-unstable and γ\gamma-stable cases, in a taxonomic and didactical way. In pursuing this task we especially stressed the mathematical side leaving the discussion of the physics to already published comprehensive material. The paper contains also a new approximate solution for the linear potential, and a new solution for prolate and oblate soft axial rotors, as well as some new formulae and comments, and an appendix on the analysis of a few interesting numerical sequences appearing in this context. The quasi-dynamical SO(2) symmetry is proposed in connection with the labeling of bands in triaxial nuclei.Comment: 48 pages, 28 figures, 6 table
    corecore