55 research outputs found

    Loss of convexity of simple closed curves moved by surface diffusion

    Get PDF
    We rigorously prove that there exists a simple, strictly convex, smooth closed curve which loses convexity but stays simple without developing singularities when it moves by its surface diffusion for a short time

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    No full text
    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte

    A Phase-Field Model for Diffusion-Induced Grain Boundary Motion

    No full text

    Ontogenic and ecological control of metamorphosis onset in a carapid fish, Carapus homei: Experimental evidence from vertebra and otolith comparisons

    Full text link
    In Carapus homei, reef colonisation is associated with a penetration inside a sea cucumber followed by heavy transformations during which the length of the fish is reduced by 60%. By comparing vertebral axis to otolith ontogenetic changes, this study aimed (i) to specify the events linked to metamorphosis, and (ii) to establish to what extent these fish have the ability to delay it. Different larvae of C. homei were caught when settling on the reef and kept in different experimental conditions for at least 7 days and up to 21 days: darkness or natural light conditions, presence of sea cucumber or not, and food deprivation or not. Whatever the nutritional condition, a period of darkness seems sufficient to initiate metamorphosis. Twenty-one days in natural light conditions delayed metamorphosis, whereas the whole metamorphosis process is the fastest (15 days) for larvae living in sea cucumbers. Whether the metamorphosis was initiated or not, otoliths were modified with the formation of a transition zone, whose structure varied depending on the experimental conditions. At day 21, larvae maintained in darkness had an otolith transition zone with more increments (around 80), albeit wider than those (more or less 21) of individuals kept under natural lighting. These differences in otolith growth could indicate an increased incorporation rate of released metabolites by metamorphosing larvae. However, the presence of a transition zone in delayed-metamorphosis larvae suggests that these otolith changes record the endogenously-induced onset of metamorphosis, whereas body transformations seem to be modulated by the environmental conditions of settlement. (C) 2004 Wiley-Liss, Inc

    Mechanisms of StpA-mediated RNA remodeling

    No full text
    In bacteria, transcription, translation and gene regulation are highly coupled processes. The achievement of a certain functional structure at a distinct temporal and spatial position is therefore essential for RNA molecules. Proteins that facilitate this proper folding of RNA molecules are called RNA chaperones. Here a prominent example from E. coli is reviewed: the nucleoid associated protein StpA. Based on its various RNA remodeling functions, we propose a mechanistic model that explains how StpA promotes RNA folding. Through transient interactions via the RNA backbone, thereby shielding repelling charges in RNA, it pre-positions the RNA molecules for the successful formation of transition states from encounter complexes
    corecore