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Loss of convexity of simple closed curves
moved by surface diffusion
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Abstract

We rigorously prove that there exists a simple, strictly convex, smooth closed
curve which loses convexity but stays simple without developing singularities when
it moves by its surface diffusion for a short time.
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1 Introduction

We consider the surface diffusion equation of the form

V =—ks on (), 0,
{ (t), t > Q

T'(0) = L.

Here t denotes the time variable and I'(f) denotes an unknown evolving closed curve
embedded in R?; Ty is a given initial closed curve. The quantities V, x and s denote
the outward normal velocity, the outward curvature and the arc-length parameter of I'(t)
respectively. For consistency of notation we take s so that I['(t) is parametrized clock-wise
by s. The subscript s in (1) denotes the partial derivative with respect to s. The main goal .
of this paper is to prove that there exists a simple strictly convex, smooth closed curve I'g
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Science, Sports and Culture through Grant No. 08874005.

Partially supported by The Japan Ministry of Education, Science, Sports and Culture through Grant
No. 08740082. :



such that the solution curve I'(t) of (1) loses its convexity for ¢ belonging to some interval
(to, T) with to > 0 while I'(¢) stays simple without developing singularities for ¢ € (0, 7).
This answers the conjectiure posed by J. Escher in the conference “Nonlinear Evolution
Equation” held in the end of June of 1997 in Oberwolfach. Loss of convexity was also
suggested by numerical studies by B. D. Coleman, R. S. Falk and M. Moakher [7, 8]. We
actually prove a stronger statement. Our Iy (so that I'(t) loses its convexity) is obtained
by deforming any strict convex smooth curve C in zy-plane symmetric with respect to
y-axis such that I'y agrees with C outside a small neighborhood of one of intersection of
C and y-axis. In particular, a curve I'y obtained by a slight modification of a circle C
near a point on C leads a loss of convexity in motion by surface diffusion.

Equation (1) was first proposed by Mullins [17] to explain thermal grooving in material
sciences. We refer to J. W. Cahn and J. E. Taylor [5] for derivation of (1) as well as
other related equations. Recently, J. W. Cahn, C. M. Elliott and A. Novick-Cohen [6]
derived (1) from the Cahn-Hilliard equation with a concentration dependent mobility
as a singular limit in formal basis. The equation (1) is a fourth order fully nonlinear
parabolic equation. C. Elliott and H. Garcke [9] constructed without uniqueness a local-
in-time classical solution I'(t) of (1) which is simple for arbitrary smooth, simple closed
initial curve I'g. The unique existence of local solution allowing that I'(£) may develop
self intersection is established by the authors [13]. Their proof is elementary in the sense
that they only use the coerciveness property in L? Sobolev spaces. A little bit modified
version is also presented in the present paper. Recently, J. Escher, U. F. Mayer and G.
Simonett [10] established the unique existence of local solution for any immersed initial
data not only for (1) but also for higher dimensional version of (1). Their proof, however,
uses a sophisticated semi-group theory in small Hélder spaces developed by H. Amann
[2]. Besides the parabolicity, the equation (1) has two important structures: preservation
of the area A(t) enclosed by I'(t) and decrease of the total length L(t) of I'(t) which is
easily observed by

_d_4(_t)_ = Vds = — nssds = 0,
4 [c,itt I'(®) () (2)
._._g._)_ = — kVds = -—/ K,gds S 0.

dt T'(f) r'@)

In fact, C. Elliott and H. Garcke [9] utilized property (2) to establish the global existence
of solution I'(¢) of (1) if initial data I'g is close to a circle. They also proved that I'(t)
converges to a circle with the enclosed area equal to that of I'(t) as ¢ — co. These results
are extended to higher dimensional version by J. Escher, U. F. Mayer and G. Simonett
[10].

The equation (1) is a nonlinear fourth order parabolic equation so there are several
phenomena which are different from those of second order model such as the curve short-
ening equation

I'(0) = T,. ®)

For the curve shortening equation (3) if Iy is a simple, closed, smooth curve then I'(t)
stays simple and smooth and becomes convex in a finite time (Grayson [14]). Once I'(t)
becomes convex, it stays convex until it shrinks to a point (M. Gage and R. Hamilton
[12]). For the surface diffusion equation (1) it is conjectured by C. Elliott and H. Garcke
[9] that ['(t) may cease to be embedded even if initial data Iy is simple, i.e., embedded.

{V:m on I'(¢), t > 0,
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This conjecture is proved by the authors [13]. In fact, it is shown in [13] that if initial
curve ['g is a dumbbell like shape, then I'(t) ceases to be embedded in a finite time before
it develops singularities. Our method in [13] yields an expicit example that the order of
solution may not be preserved. In fact consider a small circle contained in the neck of
dumbbell. Since the circle is a stationary solution of (1) and since our solution pinches
its neck, the order of solutions are not preserved. A numerical evidence of such ‘pinching’
is presented in [10] for various closed curves. In the present paper we show that (1) does
not preserve convexity. This shows a strong contrast with order-preserving curvature flow
equation
=K — -
It )

where convexity is preserved [11] but embeddedness is not preserved. Loss of convexity
has been proved for somewhat nonlocal model such as Mullins-Sekerka problems by U.
F. Mayer [15, 16]. We note that convexity may be lost also by the effect of nonlocal
lower order term for a class of spatially homogeneous surface evolution equation related
to chemotaxis {4].

The loss of both embeddedness and convexity reflects the fact that a fourth order
parabolic equation does not fulfill the maximum principle or the comparison principle
which are main properties of a second order parabolic equation. We explain why the
convexity may not be preserved for a fourth order problem by giving a simple linear
example. Consider the initial boundary value problem

Ut = —Ugzzz, in (0’ 00) X (_1, l)a
u(t,£1) =0, ug(t,+1)=0, ¢>0,
U’(O‘)z) = f(ﬂ?), . TE (""1’ 1)

The second derivative v = u,; solves the same problem with initial data v(0,z) = f,(z)
since
Vzz(t, £1) = Upgrs (8, £1) = —uy(¢,£1) = 0.

So the nonpreserving of concavity is reduced to the nonpreserving of negativity of solution
v, which is easy to imagine at least heuristically. For £ > 0 we deform concave function
f near zero so that 88f¢(0) = —1 and 0 > §2f%(0) > —e where f¢ denotes the deformed
concave function. Let u° denote the solution with initial data f¢ and v* = uZ,. The mean
value theorem implies

v¥(£,0) =v°(0,0) + v (0, 0)¢ + v, (¢, 0)t%/2,

for some ¢ € (0,t). Since v§ = —v¢,,, this implies

v*(2,0) > —e + ¢ — sup |v5(r,0)[t?/2.
0<r<t

Thus v*(¢,0) becomes positive for some ¢ if € is sufficiently small provided that the size
of vf, is bounded independent of . This is a rough idea of proving the loss of concavity.
However, one should be afraid that v, may depend on ¢ significantlly unless we specify
the way of deformation. (For this particular problem vy depends only on fizge O it is
easy to specify the way of deformation.) Also if the problem is nonlinear one should be
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afraid that the maximal existence time 7° may tend to zero as ¢ — 0. We introduce a
specific way of deformation so that the local existence results guarantee a positive lower
bound for T* for (1). To deform f we are tempting to replace f,, by —& — z*/4! and
integrate in = twice. However, this simple integration is not good since the deformation
affects in the first derivatives in a long range. One should localize the deformation also
in the first derivative. Our way of deformation is given in Section 2. In contrast to the
fourth order equation if we consider the second order initial-boundary value problem

Ug = Uz, in (0,00) x (-1,1),
u(t, 1) =0, t>0,
U(O, .’l:) = f(l‘), TE (_13 1)7

then u(¢,-) is concave in (—1,1) if f is concave. This is easy to prove by the maximum
principle for v = uy, since v solves the same equation with same boundary condition with
initial data v(0,z) = f(=z).

This paper is organized as follows. In Section 2 we specify a way to deform a concave
function and estimate several quantities of deformed functions. In Section 3, we use this
deformation to deform a given simple convex closed curve Iy to another simple convex
closed curve I; whose local convexity is sufficiently weak compared with —Kggss- 1IN
Secton 4 we present the fact that the solution curve I(t) of (1) starting from I} exists in
a finite time interval (0, T') depending on Iy which, however, does not shrink by the above
deformation of I'g. In Section 5 we prove that I'(t) obtained as above loses its convexity
in (0, T') with suitable choice of parameter of deformation. In the last section we give the
proof of unique existence results in Section 4.

After this work was completed we were informed of two recent interesting works related
to ours. In [1] S. A. Alvarez and C. Liu proved the analytic dependence of solutions of
(1) with respect to initial data as well as unique local existence of soluitons. In [3]
several interesting self-similar patterns of pinching-off are presented. However, formation
of pinching for (1) is not proved there.

2 Deformation of a concave function

We give a way to modify an even strictly concave function defined in the interval I :=
(=1,1) near zero so that its concavity is weak near zero while the minus of its sixth
derivative is not small at zero.

For a given concave function f on / and parameters ¢, § > 0 we define a new function

(Mes)(@) = F=5)+ [ vesl)de, zel
with
Ves(7) = /0 “wes(€)depya(a) + £ (@)(1 - p1/4(z)),
wes(w) = (¢ — S)rlo) + (@)1 - (o)),
where f' = df /dz, f" = d®f/dz?. Here p; is a cut-off function near zero defined by
ws(z) = (|z|/6),
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where ¢ is given for example by

oe)=a-2), o)== T ser @

with p(x) = e™/% for z > 0; p(z) = 0 for x < 0, so that ¢ € C[0, o) satisfying
0<p<1¢p(x)=1forz <1and p(r) =0 for z > 2. (We won’t use the explicit
formula of ¢ but we need the properties in the sequel.) The parameter £ measures the
concavity of M, s f near zero while § measures the size of region where the sixth derivative
of M, sf equals —1. We shall estimate M, sf in L2-Sobolev space H™(I) for f in H™(I);
the norm of f in H™(I) is denoted || f||,». By the above deformation we should be afraid
that M, sf may lose its concavity. Fortunately, it turns out that M, sf is strictly concave
if § is taken sufficiently small independent of 0 < & < 1. We shall state them in a precise
way.

Lemma 1 . Let f be in H™(I) with an integer m > 2. Assume that sup; f” < 0 and that
f is even, ie., f(z) = (—:c) forxz € 1. Assume that0 <e <1 and that 0 < 6 <1/8.
(i) The functzon Jes = M sf is an even function.

(1) fes € H™(I) and there exists a positive constant C* = C (m 6, f, ) such that

| fesllm < CF* for alle € (0,1].

(iii) f.s(z) = f(z) for 1/2 < |z| < 1.
(i) fe(,zé) () = —e — z*/4! for |z| < §. In particular,

Aoy =-s 190 =0, 90)=-1,

where f*%) denotes the k-th derivative of f.
(v) There ezists by = bo(f, ) > 0 such that

() < — minge, —mf| @) <o
Jorallz €1, 6 €(0,6) and € € (0,1]. In particular,

Losz) S T() for o] < }
Jor all 6 € (0,8) and € € (0,1].

Proof. (i) Since s and f are even, w, s is even so that Vs is odd. Thus f, 5 is even.
(11) By definition and the Schwarz inequality we see

| fe,s — (—E)Ho < V2||fus — (—'2')”L°°(I)

< V2 f sl < 2015 sllo = 2llveslos

[vesllo < V2llveslls < V2(llwesllzay + 1PN maen)-
Since

lwesllo < V31 + 1) +17@fo for0<e <1



and C
152l < Colllwesllo + 11£1l0) + IF@1lo

for a constant depending only on ¢, the Schwarz inequality yields a bound for | fe.51l0,
[l fe,6ll1, [l fesll2 independent of € € (0,1], § € (0,1/8).

We next estimate f]; in H™ () for m > 3. Since H™!(I) is a Banach algebra for
m>2,

I [ wes(@)delim1 < | / ’we, (©)d€llo + lwesllm-s
< Valueallo+ C™(le + Zolbm-allpslims + 1/ Vlmsl - glin-s)
< P+ Dlms)

with some constant Cj* independent of & € (0, 1] but depends on § through s while C™
depends only on m. Smce

I fe sllm-1 < Cm+1(||/0 We,6(§)d lm-1ll01/allm-1 + | f lm=1111 = ©1/allm-1),

we obtain
| fz6llm-1 < CF 1+ || lim-1)

with some constant C3* independent of € € (0, 1]. This completes the proof of (ii).
(iii) Since both fsa and f are even it suffices to prove that f.s5(z) = f(z) for z €
[1/2,1). Since @1/4(§) = 0 for |£] > 1/2,

fool®) = $@) = [ (0eal6) = P
172 g€
= [ ([ westmdn — £€)ers€)de for o > 172

-1/2

The integrand is an odd function so that f, s(z) = f(z) for z € [1/2,1).
(iv) Since § < 1/8 so that 26 < 1/4, we see w5(z) = p1/4(z) = 1 for |z| < 6. Thus

4

F3(2) = vl 5(x) = wep(z) = —s-j_, for |z| < 6.

(v) Differentiate f s twice to get
fe‘,? (z) = we5(x)1/4(x) + /: we,5(€)dER 1a(x) + FO () (1 — p1a(z)) — f ()1 4().
For |z| < 1/4 we see that |
153 (@) = wes(@) < — min(e, inf | /@) <0,
since @1 /4(z) = 1. For 1/2 < |z| < 1 we see that

fid(@) = fP(z) < ~inf |f] <0,



since ¢y1/4(z) = 0. It remains to estimate fe(a)(:v) for z satisfying 1/4 < |z| < 1/2. We
may assume that 1/4 < z < 1/2 since f, s is even. For such an z since § < 1/8 we see
that

we5(z) = fO(z),
B(@) = 19@) + ([ wes(©)d — 7 (@)ehala).

Since f'(0) = 0, we see that
[wes@)de = [T —)906(5) A GEREAGNE
= [+ 5+ (e + 1'0)
Combining these two identities we arrive at
] 4 » )
@ = fO@) - /0 (e+ ;% + F®€))s(£)dEdh ()
< —igf| @]+ /025 ©o(§)dE sup |y u|M  for € € (0,1]

with M =sup; |f@|+ 1+ 1/4L. Since

” ) ’ d k 26
= <
| es©de = [ ole)de <26,
we see that |
oh (2) < ——mf F]
for all e € (0,1] and z € (1 /4,1/ 2) provided that 6 is sufficiently small, say

infr | f®)|

0<é<ép:
43“P1 |‘/’1/4lM

We have thus proved (v). o

Remark 2 . From the proof we see that the constant CI" in (ii) may tend to infinity as
6 tends to zero for m > 3 since we have to estimate ||@s|lm—z. For m =0, 1,2 the consta.nt
Cy* stays bounded as § tends to zero.

3 Deformation of a strictly convex closed curve

We introduce a parametrization of a simple, closed, strictly convex curves in the plane
R? by using a reference curve. Let M? be a smooth closed convex curve embedded in
R?. We assume that M is symmetric with respect to y-axis and that MP is contained
in {(z,y);y < 0}. We further assume that M° contains a straight line segment on z-
axis. Let 7 be the arc-length parameter of M° so that it parametrizes M? clock-wise. By
definition MY is of the form

M°® = {X°(n) = (X(n), X3(n)) € R%n € T := R/2LZ},
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where 2L is the length of M°. By symmetry the arc-length parameter 7 is taken so that

X2 =—-X{(-n) 20, [n| <L,
X2(n)=X3(-n) <0, In| <L,
X°(n) = (n,0) for |n] < a with some a € (0, L/2).

Since MP is convex, the outward curvature x°(n) is always nonpositive for n € T. We fix
M? and call M? a reference curve. For an integer m > 2 let E™(T) be '

E™T) = {do € H™(T); do(n) = do(—n) >0 for 7 satisfying |n| < L}.
For dy € E™(T) we associate (at least) a C! curve

Tldo] = {X°(n) + do(m)n®(n);n € T},

where n%(n) is the outward normal of M°. By symmetry of M and dy € E™(T), I'[dg]
is simple closed since M? is convex and do(n) > 0. Let &™ be the set of all I'[dy] with
dy € E™(T) such that the outward curvature xo of I'[dy] is negative everywhere. Of
course, for each Iy € X™ there is a unique dy € E™(T) such that T’y = I'[dy].

We shall deform I'[dy] € £™. Since the curvature kg of I'[dy] is nagative,

sup dopy < 0.
ni<a

Since the r&striétion adp of dy on (—a, a) is even, rody € H™(—a,a). We deform r,dy by
M, ;s and dilation. For a function f € H™(~a,a) and 8 > 0 let Dgf denote

a

(Dsf)(z) = f(Bz), =] <.

g

Evidently, Dg gives an isomorphism from H™(—q, @) onto H™(—a/8,a/f3). It also pre-
serve uniform nonnegativity of the second derivative of function. For even f € H™(—a,a)
with supj,<, f® < 0 we set

Msf = (Dijao M50 D,)f € H™(—a,a),

where M,s is a deformation operator given in Section 2 with parameters € € (0,1],
8 € (0,1/8). We deform dy by defining d5° by

(M25(rado)) (), Il < a,

5
do(n), a<|n <L ®)

dg’(n) = {

The next results immdiately follow from Lemma 1 and Remark 2.

Theorem 3 Let dy € E™(T) such that I[dy] € S™(T) with an integer m > 2. Let
0<e<1and0<6<1/8 and letd5’ be given in (5).

(i) T[d°] is symmetric with respect to y-agis.

(i) d5° € H™(T) and there ezists a positive constant bT; independent of € such that

||d(€)'6”Hm(T) <bys forallee(0,1]

8



and b7's is bounded as 6 — 0 form =2 but unboundedas6—+0form>3
(#1) Outside the set {(z, y) |a:| < ba,y > 0} the set ['[do] agrees with T'[d5°].

() S5 0) = o/, S2di(0) =0, 31505 (0) = ~1/a".
(v) There ezists 6y > 0 such that

d?
Imllp ——dg’(n) <0,
Ui <ad

inf d5°(n) > do(a) >0

Inl<e
foralle € (0,1] and § € (0,6). In particular, T[dS°] € T™(T) withinfr d5® > infy dy > 0
Jor alle € (0,1] and § € (0,8).

For I’y = I['[dg] € ™ we set
§%°(To) :=Td5"],

where d5° is given in (5). If § is taken small (§ < &) as in Theorem 3 (v) so that T'[d5’]
has negative outward curvature everywhere, S&° gives a mapping from ™ into itself for
e € (0,1] and & € (0,8). S%°([o) is a deformation of 'y near the point near Iy cross
the positive y-axis. The outward curvature x*° of S°(I's) and its derivatives at the

intersection point A of S5°(I'y) and the positive y-axis can be calculated by Theorem 3
(iv). In fact,

k&0 = —e/a2, n;’,f =0, nf,’,fnn = ——l/a,6 at point A.

This shows that the convexity of $5%(Iy) can be weakend compared with the minus of
the fourth order derivative of curvature near A by taking € small.

4 Existence of solutions for motion by surface dif-
fusion
We prepare a unique local existence of solutions of (1) which is useful to prove the loss

of convexity. As in [9, 13], to find a local solution I'(t) of (1) for Ty = I'[dy] € &™, it is
equivalent to find d = d(t,n) solving

— K0 '
{ = 2GR ) €OT) T, ©
d(0,m) = do(n), n€T

at least for short time by setting I'(t) = I'[d(¢, -)]; here J and & are the arc-length element
and the outward curvature of I'(¢), respectively. Their explicit forms are

= (dy + (1 - k%d)")"2,
1
= 73.{(1 — &0d)dyy, + 26°d2 + k2dd, + £°(1 — k°d)?},



where x® denotes the outward curvature of the reference curve M°. The problem (6) is
now written as
di + I *dpymn + Py + Q@ =0,  (t,n) € (0,T) x T, 0
d(0,7) = do(n), neT

where P = P(1,d,dy,dy,) and @ = Q(n,d, d,, dy,) are expressed as polynomla.ls of (1-—
&2d)™, J7Y, dilfdyt (i = 0,1,2,3), #d/B (5 = 0,1,2). For n with £%(n) = 0 the
evolution equation (6) is of the form

1 dp |
di = _{(1+dg)1/2 ((1+d727)3/2)n}n' 8)

Proposition 4 . Letm > 4 be an integer. Let K; be a positive constant fori =1,2. Then
there ezists T' > 0 such that for any dy € E™(T) with ||dof|sm(T) < K1 and mint dy >
1/K; there ezists a unigue solution d = d(t,n) of (7) that satisfies

d € L*(0,T; H™*(T)), d;e L*0,T; Hm‘z(T)),

Sup [[d(t, ) lamen) < A(K),

>
[Ongf d 2> 1/(2K)

with some nondecreasing function A = A(K1). Moreover, d(t,n) = d(t,—n), |n| < L so
that d(t,-) € E™(T) fort € [0, 7).

Unfortunately, the first assertion on unique existence of solutions does not directly follow
from that of [13, Theorem3] since the convexity of M° guarantees that solution always
exists without imposing smallness of dyp. The second assertion of Proposition 4 is not
difficult. Indeed d(t, —n) solves (7) with initial data do(—n) = do(n). Then by uniqueness
of solutions d(t, —n) = d(t,n) for (t,n) € [0,T] x T. This shows d(t,-) € E™(T). We shall
prove the first assertion in Section 6 for reader’s convenience although the basic idea for
the proof is similar to that of [13, Theorem3]. Applying Proposition 4 for deformed initial
data S%9(T) = I'[d5°], we have uniform local existence for (1) by virtue of Theorem 3.
We state this fact explicitly.

Theorem 5 . Let m > 4 be an integer and 'y = ['[dy] € E™. Let & be the positive
constsnt (determined by dy) in Theorem 3 (v). Then there exists a TS > 0 (independent
of €) such that for any e € (0, 1] 6 € (0,60) there exists a unique solutzon de® of (7) in
(0,T9) x T with initial data d5° (defined in Theorem 3) that satisfies

d*® € L*(0, Tg; H™4(T)), d&° e L*(0,T%; H™ 2 (T))

sup [|d*°(t, )l amry < A(BT%),
0<t<TS

inf d%° 1mmd0,
[0,T¢]x T -2T

where b7'; is given in Theorem 3 (ii) and A is given in Proposition 4. Moreover, d*%(t,-) €
E™(T).

We postpone the proof of Proposition 4 and Theorem 5 in Section 6.
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5 Nonpreserving of cbnvexity

For any strictly convex smooth curve I'g symmetric with respect to y-axis, it is easy to
take a reference curve M° and dy € E™(T) so that I'; = I'[dg] up to translation in the
direction of y-axis. By this interpretation the next result shows the existence of initial
convex curve (even near strictly convex curve) which loses its convexity during evolution

by (1).

Theorem 6 . (Loss of converity). Let m > 11 be an integer and Ty = ['[dy] € T™.
Let 8 be a positive constant defined in Theorem 3 and let § be in (0,8,). Let d5° be
the deforemd function of dy (defined in Theorem 3) for € € (0,1]. Let T{ be the time
(defined in Theorem 5) such that there is a unique solution d*® of (7) in (0, Tg) X T with
zmtzal data d5°. Then there is €} such that for any € € (0,e3) there are t5° and t5° with

b < T and tg’ < 5% with the property that the solutzon T[de?(¢,-)] of (1 ) starting from
SE"S(I‘O) € X™ loses its convezity at least for t € (t5°, min(T¢, t5 )) Moreover, t§ — 0 as
e—0.

Proof. First step. We shall prove
d2,(0,0) = a~® + 5460710 > ¢~ for e € (0, 1.

(Smallness of § < & is not invoked in first two steps.) Note that the equation (7) is of
the form (8) for || < a. Differentiating (8) in n twice and use the property d=%(t,n) =
d*®(t,—n), |n| < L, we arrive at

O 15 4 sa(d=2))(1,0). ©)

66 E. [
Lint,0) = (55" ~ 33(d)° 5

We set ¢ = 0 and use values of derivatives of de’ caluculated in Theorem 3 to get the
desired value of dfmt(O 0).
Second step. There is a bound K® depending on é such that

sup sup |d (8,0)] < K°.
£€(0,1] t€[0,7¢)

Indeed, differentiating (9) twice in ¢ and using (8), we observe that

10

sup [dz(t,0)] < (3 sup |

dE"S t,0
t€(0,7§] k=0 t€[0,T5)] O’ &0

with positive nondecreasing function G = G()\). By the Sobolev inequality and the
estimate of d*(¢,-) in H™(T) in Theorem 5, we now obtain

sup |dyn.(t,0)] < G(C'bL)
te[0,T9)

with a constant C’ depending only on L. Setting K° = G(C'bs) yields the desired
estimate.

11



Third step. We shall complete the proof of Theorem 6. We take 0 < § < & so
that outward curvature is nagative everywhere on I‘[de’ - By Taylor’s expansion and the
- second step, we see that :

: i o
d22(2,0) = d55(0,0) +d2,(0,0)t + /0 ( /0 d=t_(r,0)dr)do
> dg (0)+dZ5,(0,0)t — t2K®

for 0 <t < T¢. Since d§)(0) = —ea~2 by Theorem 3 and de2(t,0) > a6 by the first
step, we now arrive at

ds(t,0) > —ea 2 + a5t — K% fort € [0,TY). (10)

We can take £ small so that the quadratic polynomial of the right hand side has the
smallest positive zeros less than T¢. In fact, we can take €5 > 0 small so that

a—-6 _ (a—l2 - 4K6sga—2)1/2 -

0< Y 0-

Then for each € € (0 e}) the polynomial —ea™2 + a~%t — K2 has two positive zeros
1% < ¢5° such that 5% < T¢. By (10) for € € (0,€3)

d?(t,0) > —(t — t5°)(t — t5°) for t € [0, TY).
This implies that
d*?(¢,0) >0 for t5° < t < min(t5?, TY).

This shows that I'[d*%(t, )] loses its convexity at least for £5° < ¢ < min(t5°, T¢). The
assertion £5° — 0 as € — 0 follows from its definition.

6 Proof of Proposition 4 and Theorem 5

Proposition 4 is based on the convexity x° < 0 of the reference curve M°. It guarantees
that 1 — k% does not take zero for d > 0. Thus J~%, P and Q in (7) are always regular
for d > 0. To prove Proposition 4 we begin with a general result guaranteeing the lower
bound of solutions.

General framework. Let T = R/wZ, where w is a positive constant. We consider a
general equation of the form:

(1)

U + a(z, Uu, um)um:czm + b(:B, U, Ug, uzx)um:z + c(:r, U'a Uz, uzz) =0,
u(0, z) = up(x)

for t > 0 and z € T. We assume the followings:

(H1) There are positive constants A,, A and a; with A, < A such that a(z, ag, a;) > ay.

forz € T, A, <op < Aand o] <A

(H2) Functions a(z, ag, 1), b(z, ap, a3, az) and c(z, ao,al,ag) are regular in T x R3.
Then ‘we have

12
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Lemma 7 . Let m > 4 be integers. Assume (H1) and (H2). Then, for any uo € H™(T)
with minge up(z) > 2A., there are a Ty = To(|luol| am(T), minget uo(z)) > 0 and a unique
solution u(t,z) of (11) satisfying

u € L2(0, To; H™*(T)), w, € L¥(0, Ty; H™ 2(T)),

sup |[[u()||gm(T) < A(lluollamery),
tE[O,To]

min 1
i . > — -
() g U1 7) 2 5 iR o) (12)
where A is some nondecreasing function.

Remark 8 . (i) To(uo, p1) is nonincreasing in po > 0 and nondecreasing in g, > 0.
(ii) Proposition 4 follows directly from Lemma 7.

Proof. Set
T = {u € L*(0,T; H™*(T)); w; € L*(0, T; H™*(T)),u(0, z) = uo()}.

As in the proof of Theorem 1 of [13], we can show by virtue of (H1) and (H2) that for
any T' > 0 and given v € ZF the linear inhomogeneous equation for w(t, )
wy + a(a:, Ug, qu)wzm = {a(l', Uo, 'U'O:z:) - a(-T, v, vz)}vm::a:m
——b(:L’, Y, Vg, 'Ua:z)vzzz - C(:L', v, Uz, 'Ua:a:)a

w(0,z) = uo(z)

admits a unique solution w € Z*. It can be also shown that there are positive constants
T; nonincreasing in {|ug|| g=(T) and R nondecreasing in ||ug|| gm(1) such that the mapping

B—B;, v—w
admits a unique fixed point u satisfying

sup |[u(?)||gm(ry < A((luollam(T))
tel0,T1]

with some nondecreasing function .4, where
B={ueZp, “U”Z’Ir{; < R},

lullzg = llull2@m;amezery + luell L20m;Hm-20Ty)-

Furthermore, since
. t
T®) ~ wollzmcry < Cillu(t) = wollmeny < Cu [ llur(r)llmemydr
7 1/2
<Cy ( /0 Hut(t)lifqm_z(T)dt) 12 < CLRt\/?

for some constant C7, > 0, we have

u(t,z) > minuy(z) — CLRtY?
zeT
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for t € [0,T1] and z € T. Thus, if we put

7~ {min (5 m)

then we obtain (12). o

Proof of Theorem 5. We put.
' 1
@ 1= 5 mindo(n) > 0,
. . _
A(n,ap, 1) := Q(Zao)(a% + (1 - K (m)ao)?) 2,
2
B(n’ Qp, 01, 02) = Q(a*ao)P(ﬂ, Qp, a1, (12),

2
C(TI, g, 7, 02) = Q(a—ao)Q(n, g, a1, 02)

for n € T and (ag, a1, a2) € R3, where q is in (4). We note that

A(n, a0, 1) = (e + (1 — £°(n)ao)?) 2, (13)
B(n,ao,al,ag) = P(U7a0701,0l2), ' (14)
C(na p, Oy, 052) = Q(Th o, a1, 02) (15)

forn € T, ap > a,/2 and (o, ) € R?, since q(20p/a) = 1 for ap > a,/2.
We consider the following equation:
{ di + A(n, d, dy)dpony + B(n, d, dy, duy )y + C (), d, dyy dyy) = 0, (16)
d(0,) = dg” ()

fort > 0 and € T.
We check (H1) and (H2) for (16). A(n, o, ;) satisfies (H1) with A, = oy, A =
2CL||dS° | um(T) (Where O is a constant in Sobolev inequality || f||ze < CL||f|lm(T)) and

= (A’ + (1 + |6 oo (myA)?) 2.

Since °(n) < 0, A(n, o, 1), B(n, ao, a1, ag) and C(n, ap, a1, ) also satisfy (H2).
Therefore, it follows from Lemma 7 that there are

| Ts = TO(”d(E)'&”H"'(T),%ng d5’(n)) >0
and a unique solution d*°(,n) of (16) satisfying
d** € I*(0,T3"; H™*(T)), di’ € L*(0, T H™*(T))

sup (% (&) ]| gmry < A(IG’ |l m(xy),
t€[0T€ |
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1
min_ d*(¢,) > = mind$°(n).
tmeD,TE?IXT (8,m) 2 2 neT ° (n)

Put
Tg = %(b;",m%l%do(ﬂ)) > 07

where b5 is in Theorem 3 (ii). Then, it follows from Remark 8 and Theorem 3 (ii) and
(v) that ;
Ts’ > T¢,

SuP =2 ()| gy < A(b7%),

[,0

1
. d€,5 t > ~mind —a
(Em)elTEIXT (t,n) 2 5 I o(n) =
for € € (0,1]. Furthermore, the last inequality, (13)-(15) yield
A, d,d7°) = ((d5°)* + (1 — K%d°°)%) 2,

B(’I’],dsé da, de&) — P(fl, da, de, de,&),

189 Gy 18 Gy

C(n,d** ,d°,d20) = Q(n, d* L2, d2).
Thus, we conclude that d*®(t,n) for ¢ € [0,T¢] and € T is the des1red solution of (7).
The proof of Theorem 5 is complete. O
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