20 research outputs found

    Real-time Automatic M-mode Echocardiography Measurement with Panel Attention from Local-to-Global Pixels

    Full text link
    Motion mode (M-mode) recording is an essential part of echocardiography to measure cardiac dimension and function. However, the current diagnosis cannot build an automatic scheme, as there are three fundamental obstructs: Firstly, there is no open dataset available to build the automation for ensuring constant results and bridging M-mode echocardiography with real-time instance segmentation (RIS); Secondly, the examination is involving the time-consuming manual labelling upon M-mode echocardiograms; Thirdly, as objects in echocardiograms occupy a significant portion of pixels, the limited receptive field in existing backbones (e.g., ResNet) composed from multiple convolution layers are inefficient to cover the period of a valve movement. Existing non-local attentions (NL) compromise being unable real-time with a high computation overhead or losing information from a simplified version of the non-local block. Therefore, we proposed RAMEM, a real-time automatic M-mode echocardiography measurement scheme, contributes three aspects to answer the problems: 1) provide MEIS, a dataset of M-mode echocardiograms for instance segmentation, to enable consistent results and support the development of an automatic scheme; 2) propose panel attention, local-to-global efficient attention by pixel-unshuffling, embedding with updated UPANets V2 in a RIS scheme toward big object detection with global receptive field; 3) develop and implement AMEM, an efficient algorithm of automatic M-mode echocardiography measurement enabling fast and accurate automatic labelling among diagnosis. The experimental results show that RAMEM surpasses existing RIS backbones (with non-local attention) in PASCAL 2012 SBD and human performances in real-time MEIS tested. The code of MEIS and dataset are available at https://github.com/hanktseng131415go/RAME

    Synthesis and characterization of new fluorescent two-photon absorption chromophores{

    Get PDF
    A series of dipolar and quadrupolar type two-photon absorption (TPA) compounds has been synthesized and TPA cross sections (s) were measured by Ti:sapphire femtosecond laser excitation fluorescence (l = 800 nm). Among them, the compound ) can be achieved. One quadrupolar molecule (13) possessing an arylamine donor and a pyridazine acceptor has both a high s value (1442 GM) and s/MW (1.97 GM/g)

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The Geophysical Database Management System in Taiwan

    No full text
    The Geophysical Database Management System (GDMS) is an integrated and web-based open data service which has been developed by the Central Weather Bureau (CWB), Taiwan, ROC since 2005. This service went online on August 1, 2008. The GDMS provides six types of geophysical data acquired from the Short-period Seismographic System, Broadband Seismographic System, Free-field Strong-motion Station, Strong-motion Building Array, Global Positioning System, and Groundwater Observation System. When utilizing the GDMS website, users can download seismic event data and continuous geophysical data. At present, many researchers have accessed this public platform to obtain geophysical data. Clearly, the establishment of GDMS is a significant improvement in data sorting for interested researchers

    Real-time Automatic M-mode Echocardiography Measurement with Panel Attention

    No full text
    Motion mode (M-mode) echocardiography is essential for measuring cardiac dimension and ejection fraction. However, the current diagnosis is time-consuming and suffers from diagnosis accuracy variance. This work resorts to building an automatic scheme through well-designed and well-trained deep learning to conquer the situation. That is, we proposed RAMEM, an automatic scheme of real-time M-mode echocardiography, which contributes three aspects to address the challenges: 1) provide MEIS, the first dataset of M-mode echocardiograms, to enable consistent results and support developing an automatic scheme; For detecting objects accurately in echocardiograms, it requires big receptive field for covering long range diastole to systole cycle. However, the limited receptive field in the typical backbone of convolutional neural networks (CNN) and the losing information risk in non-local block (NL) equipped CNN risk the accuracy requirement. Therefore, we 2) propose panel attention embedding withupdated UPANets V2, a convolutional backbone network, in a real-time instance segmentation (RIS) scheme for boosting big object detection performance; 3) introduce AMEM, an efficient algorithm of automatic M-mode echocardiography measurement, for automatic diagnosis; The experimental results show that RAMEM surpasses existing RIS schemes (CNNs with NL & Transformers as the backbone) in PASCAL 2012 SBD and human performances in MEIS

    A multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate coronavirus disease 2019 (COVID-19).

    No full text
    ObjectiveIn this study, we evaluated the efficacy of hydroxychloroquine (HCQ) against coronavirus disease 2019 (COVID-19) via a randomized controlled trial (RCT) and a retrospective study.MethodsSubjects admitted to 11 designated public hospitals in Taiwan between April 1 and May 31, 2020, with COVID-19 diagnosis confirmed by pharyngeal real-time RT-PCR for SARS-CoV-2, were randomized at a 2:1 ratio and stratified by mild or moderate illness. HCQ (400 mg twice for 1 d or HCQ 200 mg twice daily for 6 days) was administered. Both the study and control group received standard of care (SOC). Pharyngeal swabs and sputum were collected every other day. The proportion and time to negative viral PCR were assessed on day 14. In the retrospective study, medical records were reviewed for patients admitted before March 31, 2020.ResultsThere were 33 and 37 cases in the RCT and retrospective study, respectively. In the RCT, the median times to negative rRT-PCR from randomization to hospital day 14 were 5 days (95% CI; 1, 9 days) and 10 days (95% CI; 2, 12 days) for the HCQ and SOC groups, respectively (p = 0.40). On day 14, 81.0% (17/21) and 75.0% (9/12) of the subjects in the HCQ and SOC groups, respectively, had undetected virus (p = 0.36). In the retrospective study, 12 (42.9%) in the HCQ group and 5 (55.6%) in the control group had negative rRT-PCR results on hospital day 14 (p = 0.70).ConclusionsNeither study demonstrated that HCQ shortened viral shedding in mild to moderate COVID-19 subjects
    corecore