33 research outputs found
Marjolin's ulcers: theories, prognostic factors and their peculiarities in spina bifida patients
<p>Abstract</p> <p>Background</p> <p>Due to improved care, more and more children born with spina bifida in rural Kenya are surviving into adulthood. This improved survival has led to significant challenges in their lifestyles, especially the need to ensure pressure ulcer prevention and treatment. Malignant degeneration of pressure ulcers in spina bifida patients is very rare. The author describes the clinical presentation of two pressure ulcer carcinomas that are at variance from classical descriptions.</p> <p>Materials and methods</p> <p>An internet/Medline/PubMed search of English literature for theories on Marjolin's ulcer evolution and prognostic features of Marjolin's ulcers was performed.</p> <p>A chart review of two young adults with spina bifida who had presented to the author's hospital between 2004 and August 2010 with chronic pressure ulcers found to be Marjolin's ulcers on histo-pathological examination was performed, and the clinical features are reported.</p> <p>Results</p> <p>The two ulcers appeared clinically benign: one was a deep ulcer, while the other was shallow; both had normal, benign-appearing edges, and a foul smelling discharge. The two ulcers were surrounded by induration and multiple communicating sinuses, with no evidence of chronic osteomyelitis. The internet search revealed a total of nine theories on Marjolin's ulcer development, as well as seven clinical and four histological prognostic features.</p> <p>Discussion</p> <p>The multifactorial theory, a coalescence of a number of proposed theories, best explains the evolution of Marjolin's ulcers. Poor prognostic features include pressure ulcer carcinomas, lesions and location in the lower limbs/trunks, all present in the two patients making their prognosis dim: this is despite the surgical margins being clear of tumor. Benign appearance, induration and presence of multiple communicating sinuses are features that have not been previously described as presenting features of pressure ulcers carcinomas.</p> <p>Conclusion</p> <p>There is need for spina bifida patients and their guardians/caretakers to receive a close follow-up throughout life; health education focused on pressure ulcer prevention as well as early treatment of pressure ulcers when they occur, will avert the development of Marjolin's ulcers, and save lives.</p
Diagnosis and management of Silver–Russell syndrome: first international consensus statement
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver–Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Iron Limitation Modulates Ocean Acidification Effects on Southern Ocean Phytoplankton Communities
The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect