123 research outputs found

    Dimerization of Hepatitis E Virus Capsid Protein E2s Domain Is Essential for Virus–Host Interaction

    Get PDF
    Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV–host interactions. In addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will aid in the development of vaccines and, subsequently, specific inhibitors for HEV

    <i>ABCB1</i> (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells

    Get PDF
    BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    Positive Feedback between Transcriptional and Kinase Suppression in Nematodes with Extraordinary Longevity and Stress Resistance

    Get PDF
    Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP2 to form PIP3, a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust—implying that maternally contributed trace amounts of PI3K activity or of PIP3 block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP3-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO–dependent and –independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode

    Italian guidelines for primary headaches: 2012 revised version

    Get PDF
    The first edition of the Italian diagnostic and therapeutic guidelines for primary headaches in adults was published in J Headache Pain 2(Suppl. 1):105–190 (2001). Ten years later, the guideline committee of the Italian Society for the Study of Headaches (SISC) decided it was time to update therapeutic guidelines. A literature search was carried out on Medline database, and all articles on primary headache treatments in English, German, French and Italian published from February 2001 to December 2011 were taken into account. Only randomized controlled trials (RCT) and meta-analyses were analysed for each drug. If RCT were lacking, open studies and case series were also examined. According to the previous edition, four levels of recommendation were defined on the basis of levels of evidence, scientific strength of evidence and clinical effectiveness. Recommendations for symptomatic and prophylactic treatment of migraine and cluster headache were therefore revised with respect to previous 2001 guidelines and a section was dedicated to non-pharmacological treatment. This article reports a summary of the revised version published in extenso in an Italian version

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore