155 research outputs found

    Malignant melanoma and bone resorption

    Get PDF
    The cellular and humoral mechanisms accounting for osteolysis in skeletal metastases of malignant melanoma are uncertain. Osteoclasts, the specialised multinucleated cells that carry out bone resorption, are derived from monocyte/macrophage precursors. We isolated tumour-associated macrophages (TAMs) from metastatic (lymph node/skin) melanomas and cultured them in the presence and absence of osteoclastogenic cytokines and growth factors. The effect of tumour-derived fibroblasts and melanoma cells on osteoclast formation and resorption was also analysed. Melanoma TAMs (CD14+/CD51−) differentiated into osteoclasts (CD14−/CD51+) in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor. Tumour-associated macrophage-osteoclast differentiation also occurred via a RANKL-independent pathway when TAMs were cultured with tumour necrosis factor-α and interleukin (IL)-1α. RT–PCR showed that fibroblasts isolated from metastatic melanomas expressed RANKL messenger RNA and the conditioned medium of cultured melanoma fibroblasts was found to be capable of inducing osteoclast formation in the absence of RANKL; this effect was inhibited by the addition of osteoprotegerin (OPG). We also found that cultured human SK-Mel-29 melanoma cells produce a soluble factor that induces osteoclast differentiation; this effect was not inhibited by OPG. Our findings indicate that TAMs in metastatic melanomas can differentiate into osteoclasts and that melanoma fibroblasts and melanoma tumour cells can induce osteoclast formation by RANKL-dependent and RANKL-independent mechanisms, respectively

    Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-α and histamine whereas normal keratinocytes undergo cytolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-α are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-α and histamine on cervical carcinoma cell lines was studied.</p> <p>Methods and results</p> <p>TNF-α alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-α and histamine in combination showed no additional effect over that by TNF-α alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-α-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-α and histamine. In comparison, TNF-α or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR) I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-α immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes.</p> <p>Conclusion</p> <p>SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-α and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-α could even enhance carcinoma cell migration.</p

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function

    Regulation of Plant Developmental Processes by a Novel Splicing Factor

    Get PDF
    Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes

    Neuroanatomical Variability of Religiosity

    Get PDF
    We hypothesized that religiosity, a set of traits variably expressed in the population, is modulated by neuroanatomical variability. We tested this idea by determining whether aspects of religiosity were predicted by variability in regional cortical volume. We performed structural magnetic resonance imaging of the brain in 40 healthy adult participants who reported different degrees and patterns of religiosity on a survey. We identified four Principal Components of religiosity by Factor Analysis of the survey items and associated them with regional cortical volumes measured by voxel-based morphometry. Experiencing an intimate relationship with God and engaging in religious behavior was associated with increased volume of R middle temporal cortex, BA 21. Experiencing fear of God was associated with decreased volume of L precuneus and L orbitofrontal cortex BA 11. A cluster of traits related with pragmatism and doubting God's existence was associated with increased volume of the R precuneus. Variability in religiosity of upbringing was not associated with variability in cortical volume of any region. Therefore, key aspects of religiosity are associated with cortical volume differences. This conclusion complements our prior functional neuroimaging findings in elucidating the proximate causes of religion in the brain

    Prenylation Inhibition-Induced Cell Death in Melanoma: Reduced Sensitivity in BRAF Mutant/PTEN Wild-Type Melanoma Cells.

    Get PDF
    While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells

    Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults

    Get PDF
    There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore