37 research outputs found

    Short-term add-on therapy with angiotensin receptor blocker for end-stage inotrope-dependent heart failure patients: B-type natriuretic peptide reduction in a randomized clinical trial

    Get PDF
    OBJECTIVE: We aimed to evaluate angiotensin receptor blocker add-on therapy in patients with low cardiac output during decompensated heart failure. METHODS: We selected patients with decompensated heart failure, low cardiac output, dobutamine dependence, and an ejection fractio

    The influence of aerobic fitness status on ventilatory efficiency in patients with coronary artery disease

    Get PDF
    OBJECTIVE: To test the hypotheses that 1) coronary artery disease patients with lower aerobic fitness exhibit a lower ventilatory efficiency and 2) coronary artery disease patients with lower initial aerobic fitness exhibit greater improvements in ventilatory efficiency with aerobic exercise training. METHOD: A total of 123 patients (61.0±0.7 years) with coronary artery disease were divided according to aerobic fitness status into 3 groups: group 1 (n = 34, peak VO2;17.5 and ;24.5 ml/kg/min). All patients performed a cardiorespiratory exercise test on a treadmill. Ventilatory efficiency was determined by the lowest VE/VCO2 ratio observed. The exercise training program comprised moderate-intensity aerobic exercise performed 3 times per week for 3 months. Clinicaltrials.gov: NCT02106533 RESULTS: Before intervention, group 1 exhibited both lower peak VO2 and lower ventilatory efficiency compared with the other 2 groups (

    Efficient differentiation of Corynebacterium striatum, Corynebacterium amycolatum and Corynebacterium xerosis clinical isolates by multiplex PCR using novel species-specific primers

    Get PDF
    A multiplex-PCR (mPCR) assay was designed with species-specific primers which generate amplicons of 226 bp, 434 bp and 106 bp for differentiating the species C. striatum, C. amycolatum, and C. xerosis, respectively. mPCR results were 100% in agreement with identifications achieved by 16S rRNA and rpoB gene sequencing and by VITEK-MS.This work was supported by grants from FAPESB (JCB0031/2013) and CAPES (PROCAD 071/2013)

    Assessing positive mental health in people with chronic physical health problems: correlations with socio-demographic variables and physical health status

    Get PDF
    Background: A holistic perspective on health implies giving careful consideration to the relationship between physical and mental health. In this regard the present study sought to determine the level of Positive Mental Health (PMH) among people with chronic physical health problems, and to examine the relationship between the observed levels of PMH and both physical health status and socio-demographic variables. Methods: The study was based on the Multifactor Model of Positive Mental Health (Lluch, 1999), which comprises six factors: Personal Satisfaction (F1), Prosocial Attitude (F2), Self-control (F3), Autonomy (F4), Problem-solving and Self-actualization (F5), and Interpersonal Relationship Skills (F6). The sample comprised 259 adults with chronic physical health problems who were recruited through a primary care center in the province of Barcelona (Spain). Positive mental health was assessed by means of the Positive Mental Health Questionnaire (Lluch, 1999). Results: Levels of PMH differed, either on the global scale or on specific factors, in relation to the following variables: age: global PMH scores decreased with age (r=-0.129; p=0.038); b) gender: men scored higher on F1 (t=2.203; p=0.028) and F4 (t=3.182; p=0.002), while women scored higher on F2 (t -3.086; p=0.002) and F6 (t=-2.744; p=0.007); c) number of health conditions: the fewer the number of health problems the higher the PMH score on F5 (r=-0.146; p=0.019); d) daily medication: polymedication patients had lower PMH scores, both globally and on various factors; e) use of analgesics: occasional use of painkillers was associated with higher PMH scores on F1 (t=-2.811; p=0.006). There were no significant differences in global PMH scores according to the type of chronic health condition. The only significant difference in the analysis by factors was that patients with hypertension obtained lower PMH scores on the factor Autonomy (t=2.165; p=0.032). Conclusions: Most people with chronic physical health problems have medium or high levels of PMH. The variables that adversely affect PMH are old age, polypharmacy and frequent consumption of analgesics. The type of health problem does not influence the levels of PMH. Much more extensive studies with samples without chronic pathology are now required in order to be able to draw more robust conclusions

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore