133 research outputs found

    Dysregulation of NF–Y splicing drives metabolic rewiring and aggressiveness in colon cancer

    Get PDF
    NF-Y is an evolutionarily conserved transcription factor that binds specifically to the CCAAT elements of eukaryotic genes, most of which frequently deregulated in cancer. NF-YA, the regulatory subunit of the NF-Y complex, has two isoforms generated by alternative splicing, NF-YAl and NF-YAs, which differ in the transactivation domain. Transcriptomic data from The Cancer Genome Atlas (TCGA) database highlighted a significant increase in the expression of NF-YAs at the expense of NF-YAl in colorectal cancer (CRC), compared to healthy tissues. Despite this, high NF-YAl levels predict lower patients’ survival and distinguish the mesenchymal molecular subtype CMS4, which is characterized by the worst prognosis. Through the analysis of 3D cellular models, we demonstrated that altered expression of genes related to extracellular matrix and epithelial-mesenchymal transition sustains enhanced migratory and invasive behavior of NF-YAl-transduced cells. Moreover, the integration of metabolomics, bioenergetics and transcriptional analyses demonstrated a direct role for NFYAl in metabolic flexibility of cancer cells that adjust their metabolism in response to environmental changes to potentiate migration. The zebrafish xenograft model confirmed the metastatic potential triggered by NF-YAl in CRC cells. Altogether, our data highlight the transcriptional role of NF-YAl in CRC aggressiveness and suggest splice-switching strategies to hinder NF-YAl-induced metastatic dissemination

    Effect of ceftazidime/avibactam plus fosfomycin combination on 30 day mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae. Results from a multicentre retrospective study

    Get PDF
    Introduction The primary outcome of the study was to evaluate the effect on 30 day mortality of the combination ceftazidime/avibactam + fosfomycin in the treatment of bloodstream infections (BSIs) caused by KPC-producing Klebsiella pneumoniae (KPC-Kp). Materials and methods From October 2018 to March 2021, a retrospective, two-centre study was performed on patients with KPC-Kp BSI hospitalized at Sapienza University (Rome) and ISMETT-IRCCS (Palermo) and treated with ceftazidime/avibactam-containing regimens. A matched cohort (1:1) analysis was performed. Cases were patients receiving ceftazidime/avibactam + fosfomycin and controls were patients receiving ceftazidime/avibactam alone or in combination with in vitro non-active drugs different from fosfomycin (ceftazidime/avibactam +/- other). Patients were matched for age, Charlson comorbidity index, ward of isolation (ICU or non-ICU), source of infection and severity of BSI, expressed as INCREMENT carbapenemase-producing Enterobacteriaceae (CPE) score. Results Overall, 221 patients were included in the study. Following the 1:1 match, 122 subjects were retrieved: 61 cases (ceftazidime/avibactam + fosfomycin) and 61 controls (ceftazidime/avibactam +/- other). No difference in overall mortality emerged between cases and controls, whereas controls had more non-BSI KPC-Kp infections and a higher number of deaths attributable to secondary infections. Almost half of ceftazidime/avibactam + fosfomycin patients were prescribed fosfomycin without MIC fosfomycin availability. No difference in the outcome emerged after stratification for fosfomycin susceptibility availability and dosage. SARS-CoV-2 infection and ICS >= 8 independently predicted 30 day mortality, whereas an appropriate definitive therapy was protective. Conclusions Our data show that fosfomycin was used in the treatment of KPC-Kp BSI independently from having its susceptibility testing available. Although no difference was found in 30 day overall mortality, ceftazidime/avibactam + fosfomycin was associated with a lower rate of subsequent KPC-Kp infections and secondary infections than other ceftazidime/avibactam-based regimens

    Limited Vitrectomy versus Complete Vitrectomy for Epiretinal Membranes: A Comparative Multicenter Trial

    Get PDF
    Purpose. To evaluate whether limited vitrectomy is as effective as complete vitrectomy in eyes with epiretinal membrane (ERM) and to compare the surgical times and rates of complications. Methods. In this multicentre European study, data of eyes with ERM that underwent vitrectomy from January 2017 to July 2018 were analyzed retrospectively. In the limited vitrectomy group, a posterior vitreous detachment (PVD) was induced up till the equator as opposed to complete PVD induction till the vitreous base in the comparison group. Incidence of iatrogenic retinal breaks, retinal detachment, surgical time, and visual outcomes were compared between groups. Results. We included 139 eyes in the analysis with a mean age being 72.2 \ub1 6.9 years. In this, sixty-five eyes (47%) underwent limited vitrectomy and 74 eyes (53%) underwent complete vitrectomy. Iatrogenic retinal tears were seen in both groups (5% in limited vitrectomy versus 7% in complete vitrectomy, p=0.49). Retinal detachment occurred in 2 eyes in the limited vitrectomy group (3%) compared to none in the complete vitrectomy group (p=0.22). Best-corrected visual acuity (BCVA) and central macular thickness improved significantly with no intergroup differences (p=0.18). Surgical time was significantly shorter in the limited vitrectomy group with 91% surgeries taking less than 1 hour compared to 71% in the complete vitrectomy group (p<0.001). Conclusion. A limited vitrectomy is a time-efficient and effective surgical procedure for removal of epiretinal membrane with no additional complications

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    Validation of the INCREMENT-SOT-CPE score in a large cohort of liver transplant recipients with carbapenem-resistant Enterobacterales infection

    Get PDF
    Background: Management of infections due to carbapenemase-resistant Enterobacterales (CRE) in solid organ transplant (SOT) recipients remains a difficult challenge. The INCREMENT-SOT-CPE score has been specifically developed from SOT recipients to stratify mortality risk, but an external validation is lacking.Methods: Multicenter retrospective cohort study of liver transplant (LT) recipients colonized with CRE infection who developed infection after transplant over 7-year period. Primary endpoint was all-cause 30-day mortality from infection onset. A comparison between INCREMENT-SOT-CPE and other selected scores was performed. A two-level mixed effects logistic regression model with random effects for the center was fitted. Performance characteristics at optimal cut-point were calculated. Multivariable Cox regression analysis of risk factors for all-cause 30-day mortality was carried out.Results: Overall, 250 CRE carriers developed infection after LT and were analyzed. The median age was 55 years (interquartile range [IQR]: 46-62) and 157 were males (62.8%). All-cause 30-day mortality was 35.6%. A sequential organ failure assessment (SOFA) score >= 11 showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 69.7%, 76.4%, 62.0%, 82.0%, and 74.0%, respectively. An INCREMENT-SOT-CPE >= 11 reported a sensitivity, specificity, PPV, NPV, and accuracy of 73.0%, 62.1%, 51.6%, 80.6% and 66.0%, respectively. At multivariable analysis acute renal failure, prolonged mechanical ventilation, INCREMENT-SOT-CPE score >= 11 and SOFA score >= 11 were independently associated with all-cause 30-day mortality, while a tigecycline-based targeted regimen was found to be protective.Conclusions: Both INCREMENT-SOT-CPE >= 11 and SOFA >= 11 were identified as strong predictors of all-cause 30-day mortality in a large cohort of CRE carriers developing infection after LT

    Hsmar1 transposition is sensitive to the topology of the transposon donor and the target

    Get PDF
    Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology

    Exome-wide somatic mutation characterization of small bowel adenocarcinoma

    Get PDF
    Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003-2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (Al) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.Peer reviewe

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore