35 research outputs found

    Assessing health and well-being among older people in rural South Africa

    Get PDF
    Background: The population in developing countries is ageing, which is likely to increase the burden of noncommunicable diseases and disability. Objective: To describe factors associated with self-reported health, disability and quality of life (QoL) of older people in the rural northeast of South Africa. Design: Cross-sectional survey of 6,206 individuals aged 50 and over. We used multivariate analysis to examine relationships between demographic variables and measures of self-reported health (Health Status), functional ability (WHODASi) and quality of life (WHOQoL). Results: About 4,085 of 6,206 people eligible (65.8%) completed the interview. Women (Odds Ratio (OR) 1.30, 95% CI 1.09, 1.55), older age (OR2.59, 95% CI 1.97, 3.40), lower education (OR1.62, 95% CI 1.31,2.00), single status (OR1.18, 95% CI 1.01, 1.37) and not working at present (OR1.29, 95% CI 1.06, 1.59) were associated with a low health status. Women were also more likely to report a higher level of disability (OR1.38, 95% CI 1.14, 1.66), as were older people (OR2.92, 95% CI 2.25, 3.78), those with no education (OR1.57, 95% CI 1.26, 1.97), with single status (OR1.25, 95% CI 1.06, 1.46) and not working at present (OR1.33, 95% CI 1.06, 1.66). Older age (OR1.35, 95% CI 1.06, 1.74), no education (OR1.39, 95% CI 1.11, 1.73), single status (OR1.28, 95% CI 1.10, 1.49), a low household asset score (OR1.52, 95% CI 1.19, 1.94) and not working at present (OR1.32; 95% CI 1.07, 1.64) were all associated with lower quality of life. Conclusions: This study presents the first population-based data from South Africa on health status, functional ability and quality of life among older people. Health and social services will need to be restructured to provide effective care for older people living in rural South Africa with impaired functionality and other health problems

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    On the Dynamics of the Spontaneous Activity in Neuronal Networks

    Get PDF
    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABA(A) receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment

    Get PDF
    Background High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods We used data for exposure to risk factors by country, age group, and sex from pooled analyses of populationbased health surveys. We obtained relative risks for the eff ects of risk factors on cause-specifi c mortality from metaanalyses of large prospective studies. We calculated the population attributable fractions for- each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the eff ects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specifi c population attributable fractions by the number of disease-specifi c deaths. We obtained cause-specifi c mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the fi nal estimates. Findings In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10\ub78 million deaths, 95% CI 10\ub71\u201311\ub75) of deaths from these diseases in 2010 were attributable to the combined eff ect of these four metabolic risk factors, compared with 67% (7\ub71 million deaths, 6\ub76\u20137\ub76) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined eff ects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing eff ect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the globalresponse to non-communicable diseases

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    A distinct Hox code for the branchial region of the vertebrate head

    No full text
    The branchial region of the vertebrate head forms through complex interactions involving rhombomeric segments, neural crest and branchial arches. It is thought that aspects of their patterning mechanisms are linked and involve Hox-2 genes, whose overlapping and spatially restricted expression domains represent a combinatorial code for generating regional diversity. Vertebrates possess four Hox clusters of Antennapedia class homeobox genes, related to each other by duplication and divergence from a common ancestral complex. In consequence, at equivalent positions in different clusters there are highly related genes known as subfamilies or paralogous groups. As Hox-2 genes cannot fully account for patterning individual rhombomeres, we investigated whether offsets in expression limits of paralogous genes could account for the generation of regional diversity. We report here that, with the exception of the labial subfamily, paralogues show identical expression limits in rhombomeres, cranial ganglia and branchial arches, providing a combinatorial Hox code for the branchial region that seems to be different in organization to that of the trunk.link_to_subscribed_fulltex
    corecore