32 research outputs found

    The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report

    Get PDF
    BACKGROUND: Rates of estrogen-dependent cancers are among the highest in Western countries and lower in the East. These variations may be attributable to differences in dietary exposures such as higher seaweed consumption among Asian populations. The edible brown kelp, Fucus vesiculosus (bladderwrack), as well as other brown kelp species, lower plasma cholesterol levels. Since cholesterol is a precursor to sex hormone biosynthesis, kelp consumption may alter circulating sex hormone levels and menstrual cycling patterns. In particular, dietary kelp may be beneficial to women with or at high risk for estrogen-dependent diseases. To test this, bladderwrack was administered to three pre-menopausal women with abnormal menstrual cycling patterns and/or menstrual-related disease histories. CASE PRESENTATION: Intake of bladderwrack was associated with significant increases in menstrual cycle lengths, ranging from an increase of 5.5 to 14 days. In addition, hormone measurements ascertained for one woman revealed significant anti-estrogenic and progestagenic effects following kelp administration. Mean baseline 17β-estradiol levels were reduced from 626 ± 91 to 164 ± 30 pg/ml (P = 0.04) following 700 mg/d, which decreased further to 92.5.0 ± 3.5pg/ml (P = 0.03) with the1.4 g/d dose. Mean baseline progesterone levels rose from 0.58 ± 0.14 to 8.4 ± 2.6 ng/ml with the 700 mg/d dose (P = 0.1), which increased further to 16.8 ± 0.7 ng/ml with the 1.4 g/d dose (P = 0.002). CONCLUSIONS: These pilot data suggest that dietary bladderwrack may prolong the length of the menstrual cycle and exert anti-estrogenic effects in pre-menopausal women. Further, these studies also suggest that seaweed may be another important dietary component apart from soy that is responsible for the reduced risk of estrogen-related cancers observed in Japanese populations. However, these studies will need to be performed in well-controlled clinical trials to confirm these preliminary findings

    Genomic analysis of atypical fibroxanthoma

    Get PDF
    Atypical fibroxanthoma (AFX), is a rare type of skin cancer affecting older individuals with sun damaged skin. Since there is limited genomic information about AFX, our study seeks to improve the understanding of AFX through whole-exome and RNA sequencing of 8 matched tumor-normal samples. AFX is a highly mutated malignancy with recurrent mutations in a number of genes, including COL11A1, ERBB4, CSMD3, and FAT1. The majority of mutations identified were UV signature (C>T in dipyrimidines). We observed deletion of chromosomal segments on chr9p and chr13q, including tumor suppressor genes such as KANK1 and CDKN2A, but no gene fusions were found. Gene expression profiling revealed several biological pathways that are upregulated in AFX, including tumor associated macrophage response, GPCR signaling, and epithelial to mesenchymal transition (EMT). To further investigate the presence of EMT in AFX, we conducted a gene expression meta-analysis that incorporated RNA-seq data from dermal fibroblasts and keratinocytes. Ours is the first study to employ high throughput sequencing for molecular profiling of AFX. These data provide valuable insights to inform models of carcinogenesis and additional research towards tumor-directed therapy

    Analysis of Tp53 Codon 72 Polymorphisms, Tp53 Mutations, and HPV Infection in Cutaneous Squamous Cell Carcinomas

    Get PDF
    Non-melanoma skin cancers are one of the most common human malignancies accounting for 2-3% of tumors in the US and represent a significant health burden. Epidemiology studies have implicated Tp53 mutations triggered by UV exposure, and human papilloma virus (HPV) infection to be significant causes of non-melanoma skin cancer. However, the relationship between Tp53 and cutaneous HPV infection is not well understood in skin cancers. In this study we assessed the association of HPV infection and Tp53 polymorphisms and mutations in lesional specimens with squamous cell carcinomas.We studied 55 cases of histologically confirmed cutaneous squamous cell carcinoma and 41 controls for the presence of HPV infection and Tp53 genotype (mutations and polymorphism).We found an increased number of Tp53 mutations in the squamous cell carcinoma samples compared with perilesional or control samples. There was increased frequency of homozygous Tp53-72R polymorphism in cases with squamous cell carcinomas, while the Tp53-72P allele (Tp53-72R/P and Tp53-72P/P) was more frequent in normal control samples. Carcinoma samples positive for HPV showed a decreased frequency of Tp53 mutations compared to those without HPV infection. In addition, carcinoma samples with a Tp53-72P allele showed an increased incidence of Tp53 mutations in comparison carcinomas samples homozygous for Tp53-72R.These studies suggest there are two separate pathways (HPV infection and Tp53 mutation) leading to cutaneous squamous cell carcinomas stratified by the Tp53 codon-72 polymorphism. The presence of a Tp53-72P allele is protective against cutaneous squamous cell carcinoma, and carcinoma specimens with Tp53-72P are more likely to have Tp53 mutations. In contrast Tp53-72R is a significant risk factor for cutaneous squamous cell carcinoma and is frequently associated with HPV infection instead of Tp53 mutations. Heterozygosity for Tp53-72R/P is protective against squamous cell carcinomas, possibly reflecting a requirement for both HPV infection and Tp53 mutations

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Comparison of simple and complex liver intensity modulated radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence.</p> <p>Methods</p> <p>An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans.</p> <p>Results</p> <p>Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001).</p> <p>Conclusions</p> <p>Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity.</p
    corecore