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Abstract

Atypical fibroxanthoma (AFX), is a rare type of skin cancer affecting older individuals with

sun damaged skin. Since there is limited genomic information about AFX, our study seeks

to improve the understanding of AFX through whole-exome and RNA sequencing of 8

matched tumor-normal samples. AFX is a highly mutated malignancy with recurrent muta-

tions in a number of genes, including COL11A1, ERBB4, CSMD3, and FAT1. The majority

of mutations identified were UV signature (C>T in dipyrimidines). We observed deletion of

chromosomal segments on chr9p and chr13q, including tumor suppressor genes such as

KANK1 and CDKN2A, but no gene fusions were found. Gene expression profiling revealed

several biological pathways that are upregulated in AFX, including tumor associated macro-

phage response, GPCR signaling, and epithelial to mesenchymal transition (EMT). To

further investigate the presence of EMT in AFX, we conducted a gene expression meta-

analysis that incorporated RNA-seq data from dermal fibroblasts and keratinocytes. Ours is

the first study to employ high throughput sequencing for molecular profiling of AFX. These

data provide valuable insights to inform models of carcinogenesis and additional research

towards tumor-directed therapy.

Introduction

Atypical fibroxanthoma (AFX) is a rare cutaneous neoplasm that typically affects older white

males with a history of sun exposure or radiation. Although precise epidemiologic data are

lacking, AFX comprises less than 1% of skin cancers removed by Mohs micrographic surgery

[1]. Histologically, AFX demonstrates marked variety in cellular composition, including

bizarre, pleomorphic macrophages, spindled fibroblasts, and epithelioid cells. The histologic

differential diagnosis includes poorly-differentiated squamous cell carcinoma (cSCC), desmo-

plastic melanoma, and soft tissue sarcomas such as leiomyosarcoma and undifferentiated

pleomorphic sarcoma/ malignant fibrous histiocytoma (UPS/MFH). AFX is a diagnosis of

exclusion based on negative immunohistochemistry to rule out other cancers[2]. AFX may
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stain with CD68, vimentin, actin, or CD10, though these are not consistent nor specific to the

diagnosis[3].

Many sarcomas are driven by gene fusions, such as COL11A1-PDGF that drives dermatofi-

brosarcoma protuberans (DFSP)[4]. However, fusions have not been investigated in AFX. It

has also been suggested that the spindled cells in AFX are not dermal-derived fibroblasts but

rather malignant keratinocytes that have undergone epithelial-to-mesenchymal transition

(EMT)[5,6].

Targeted studies have identified genetic aberrations in AFX, including mutations in the

coding region of TP53 [7] and TERT promoter[8], and deletions of chr9p and chr13q[9]. To

characterize the genomic landscape of AFX, we sequenced the exomes and transcriptomes of 8

tumors and paired normal control skin biopsies. We investigated gene fusions with Nugen’s

Ovation Fusion Panel Target Enrichment System. Our analyses identified recurrent mutated

genes and copy number variations (CNV) as well as gene pathways involved in tumor-associ-

ated macrophage (TAM) response and EMT.

Methods

Sample collection

Eight tumors were selected for inclusion. Eligible tumors were superficial cutaneous papules

or nodules, diagnosed by skin biopsy with formalin fixation and paraffin embedding. The

diagnosis was based on routine histopathology including dermal proliferation of spindled cells

and/or pleomorphic multinucleate giant cells, with numerous atypical cells and mitoses. Eligi-

ble tumors did not express S100 or Sox-10, did not express keratin, but did label with CD10

and procollagen-1. Fresh tissue was obtained for this study from debulking specimens prior to

Mohs micrographic surgery at UCSF and the San Francisco VA Medical Center (7 specimens)

or wide local excision at Barts Health NHS Trust (1 specimen), and histopathologic features

were confirmed on frozen section. There were no findings of deeper invasion, or perineural/

perivascular invasion.

Tumors and peritumoral normal skin from both centers were snap frozen, embedded in

Tissue-Tek (Sakura Finetek, US) and stored at -80˚C. All eight specimens were processed and

sequenced together to avoid batch effect inconsistencies. To enrich for cell populations, 8um

sections were cut onto 1.0mm PEN membrane slides (Zeiss, Cambridge, UK) and laser-cap-

ture microdissection of tumor and normal tissue was performed using the Zeiss Palm Micro-

beam microscope (Zeiss). QIAamp DNA micro and RNeasy micro kits were used for nucleic

acid extraction (Qiagen, Crawley, UK). All subjects that contributed tumor for exome/tran-

scriptome sequencing signed written informed consent under protocols approved by the

UCSF Institutional Review Board or the East London and City Health Authority Local Ethics

Committee, in accordance with the Declaration of Helsinki Principles. De-identified tumors

for flow cytometry were collected as anonymous surgical discard specimens and self-certified

by the investigators as “Not Human Subjects Research” per UCSF IRB guidelines.

Exome sequencing

Exome sequence libraries were batch prepared with the Nimblegen SeqCap EZ Exome 3.0 cap-

ture kit and libraries sequenced in one run on the Illumina HiSeq 2500 for 101-basepair,

paired-end reads. Sequencing results were quality checked using FastQC v0.11.1. Sequences

were aligned to the human genome (hg19) using bwa-mem v0.7.12[10]. GATK pipeline was

used to prep the BAM files for variant calling. Picard v1.129 marked PCR duplicates, GATK

v3.4.0[11] realigned the reads around Indels and recalibrated the base scores, and Samtools

v1.2[12] sorted and indexed the aligned bam files.

Genomic analysis of atypical fibroxanthoma
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Mutect v1.1.7[13], Varscan2 v2.3.8[14], and Strelka v1.0.14[15] were used to find somatic

single-nucleotide variants (SNVs) and Indels. Only mutations detected in two of three pro-

grams were kept. Results were annotated using Oncotator v1.5.3.0[16]. A python script was

written to determine the number of C>T mutations that appeared in dipyrimidines. For driver

mutation discovery, OncodriveFM v0.6.0[17], OncodriveClust v0.4.1[18], and MutsigCV v1.4

[19] were used with default parameters. CNVKit v0.6.1[20] was run to identify CNV using the

processed bam files and SeqCap EZ 3.0 exome capture file. These data have been deposited to

the SRA (Short Read Archive) database under SRP082197.

Gene fusion detection

Nugen Ovation Fusion Panel Target Enrichment System was used to identify potential gene

fusions. Two DFSP positive controls were prepared in parallel. A pre-defined pool of 500

genes from COSMIC and ChimerDB are included in the fusion panel. After sequencing on an

Illumina 2500, Chimerascan v0.4.5[21] and Soapfuse v1.26[22] were used to identify gene

fusions from the sequencing results using default parameters. Nested PCR primers were

designed to span potential fusions for verification.

Transcriptome sequencing

RNA samples were reverse transcribed with Nugen Ovation RNA-Seq system kit. Libraries

were batch prepared from fragmented cDNA using Nugen Ovation Ultralow kit, and

sequenced on the Illumina HiSeq 2500 in one run. Resulting reads were aligned to the

human genome (hg19) using Tophat v2.0.14[23], and htseq-count v0.6.0[24] obtained

counts using the refflat file downloaded from the UCSC genome browser. To obtain differen-

tial expression, edgeR v3.10.5[25] was run accounting for the tumor-normal patient pairs.

Genes with at least 1 count per million (CPM) in 1 sample were considered for differential

expression. Four publicly-available dermal fibroblast datasets from the SRA were down-

loaded (SRR1976435, SRR1976434, SRR1976433, and SRR773861), and processed in parallel.

EdgeR determined DEG between the AFX tumors and these samples. The CPM table was

input into Cluster v3.0[26] to perform hierarchal clustering using mean-center, normalizing

genes, and average linkage. GSEA (Gene Set Enrichment Analysis)[27], was used to perform

Gene Ontology analysis. Cluster files were viewed on Gene Pattern’s Hierarchical Clustering

Viewer[28]. The R package prcomp v3.2.2 performed the PCA with log CPM values, and

ggbiplot v0.55 graphed the PCA results. For t-SNE analysis, scaled estimates for each cancer

was downloaded from the firebrowse repository. Scaled estimates were converted to TPM

(transcripts per million). RSEM was run on AFX samples to generate TPM counts. The R

package Rtsne v0.11 performed the t-SNE analysis with these counts, and plotted using

ggplot2 v2.1.0. RNASeq data has been deposited to the GEO (Gene Expression Omnibus)

database under GSE85671.

Flow cytometry

Multi-parameter flow cytometry was performed on samples obtained from tumor and adjacent

non-tumor tissue as previously described [29]. Freshly isolated samples were minced and

digested overnight with buffer consisting of Collagenase Type 4 (Worthington LS004188),

DNAse (Sigma DN25-1G), 10% FBS, 1% HEPES, and 1% Penicillin/Streptavidin in RPMI

1640 medium. Single cell suspensions were filtered, centrifuged, and counted. Approximately

2x106 cells were stained with multiple fluorochrome-conjugated monoclonal antibodies. The

following antibodies were used: anti-human CD45 (anti-hCD45) (H130; eBioscience), anti-

hCD16 (CB16; eBioscience), anti-hCD14 (M5E2; BD Biosciences), anti-hCD169 (7–239;

Genomic analysis of atypical fibroxanthoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0188272 November 15, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0188272


Biolegend), anti-hCD206 (19.2; BD Biosciences), anti-hCD1c (AD5-8E7; MACS), anti-

hCD163 (GHI/61; BD Biosciences), anti-hCD68 (Y1/82A; BD Biosciences), anti-HLA-DR

(2243; eBioscience), and Ghost Dye Violet 510 (Tonbo biosciences). Data was acquired by an

LSRFortessa (BD Biosciences) and analyzed using FlowJo software (Tree Star, Inc.).

Results

Histopathology

Eight tumors were identified for sequencing (Fig 1). Four tumors demonstrated marked pleo-

morphism, with bizarre macrophages, nuclear atypia, and multinucleate giant cells. Two had

predominantly spindled histology, with whorls and fascicles of densely packed fibroblasts

with spindled nuclei. Two had epithelioid histology, with rounder cells and plump nuclei. We

Fig 1. Histopathology of AFX. AFX samples were microdissected from snap-frozen, OCT-embedded

surgical specimens. The spectrum of predominant cytomorphology included four pleomorphic/histocytic (AFX

1, 5, 6, and 8), two spindled (AFX 2 and 7), and two epithelioid (AFX 3 and 4). Scale bar indicates 300μm.

https://doi.org/10.1371/journal.pone.0188272.g001
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observed varying levels of lymphocytic infiltrate, predominantly in the spindled and epitheli-

oid subtypes.

Exome sequencing

We performed exome sequencing on eight AFX tumors and patient-paired normal keratino-

cytes. An average of 138 million reads/sample were obtained, with average alignment rate of

99.31%. Mean coverage across targeted bases was 113X for AFX and 62X for normal samples,

with 58% of targeted bases having at least 20X coverage. We employed multiple bioinformatics

tools to optimize specificity for mutation calling[30]. Mutect, Varscan2, and Strelka detected

an average of 2945, 4930, and 4740 SNVs respectively. Varscan2 and Strelka detected an aver-

age of 466 and 30 insertions/deletions (Indels). SNVs found in two of three programs (4128 on

average) and Indels found in both programs (22 on average) were annotated using Oncotator

for downstream analyses (S1 Table). AFX has a very high mutational burden with a somatic

mutation rate of 64 mutations per megabase of DNA (Fig 2a). The COSMIC database was

used to query mutations in canonical cancer genes, however no recurrent SNP or Indels was

identified in our tumors.

Ultraviolet (UV)-induced mutations are characterized by C>T transitions in dipyrimidines

[31] and play a key role in skin cancer development[32]. More than 70% of mutations in

AFX were C->T mutations in dipyrimidines (Fig 2b), suggesting that AFX are driven by UV

radiation.

A previous comparative genomic hybridization (CGH) array study reported deletions in

chr9p and chr13q[9]. We evaluated CNV in our samples using CNVKit. In the majority of

samples, we confirmed deletions in chr9 and chr13 (Fig 2d). Chr9 had larger magnitude copy

number deletions than chr13, and there were 80 deleted genes in chr9 in 87% of tumors (S2

Table). Tumor suppressors KANK1 (-0.5332 average log2 copy ratio (CR)) and CDKN2A
(-1.0184 average log2 CR) were deleted in chr9. MTAP, a gene frequently co-deleted with

CDKN2A, was deleted in our samples (-1.0184 average log2 CR).

Commonly mutated genes in AFX

The mutational signature of AFX is shown in Fig 2c. Of 49 genes mutated in more than 75% of

samples, 21 were identified as FLAGS, a term describing genes that appear frequently in a

majority of exome sequencing studies and may not have clinical significance[33]. Although

FLAG genes are generally not considered potential drivers, 5/8 of our tumors had nonsense

mutations in FAT1 (average variant allele frequency (VAF) = 30.38%), leading to premature

stop codons (Fig 2c). 4 of these had nonsense mutations located within the cadherin domain,

and the fifth had a nonsense in the laminin G region. The most mutated non-FLAG gene

was COL11A1 (average VAF = 30.17%), with missense mutations in 7/8 AFX tumors and a

3’UTR mutation in the eighth. Other top mutated non-FLAG genes include CSMD3 (average

VAF = 30.24%) and ERBB4 (average VAF = 25.21%).

RNA fusion sequencing

To identify potential gene fusions, we used Nugen Ovation Fusion Panel Target Enrichment

System for RNA library preparation prior to high-throughput sequencing[34]. We used Chi-

merascan and Soapfuse to identify gene fusions from the sequencing results. COL1A1-PDGFB
fusions were readily detected in two control DFSP, with spanning reads present at 600–1000

times any of the potential fusions detected in AFX. We were unable to validate any of the

top AFX fusion candidates from these programs with nested PCR, suggesting false positive

computational results (data not shown).
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Fig 2. Whole exome sequencing identifies copy number variations, and frequent UV mutations in AFX. (a)

Histogram of somatic mutation rate (number of mutations/megabase of DNA) for each AFX tumor. (b) Stacked plot of the

percentage of mutations of each type. (c) Matrix illustrates genes that are mutated in at least 75% of the AFX tumors and the

type of mutations found. When more than one mutation is present for a single gene, only one type of mutation is shown

delineated in order by the legend; insertion/deletion, nonsense/nonstop, missense, splice-site, 3’ or 5’UTR. (d) A heatmap of

copy number variations in the 8 tumor samples relative to the normal. Red represents gains, blue represents deletions, and

white represents no losses or gains in that location in the genome.

https://doi.org/10.1371/journal.pone.0188272.g002
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Transcriptome sequencing

We performed RNA-seq on the same set of matched tumor-normal pairs. We obtained an

average of 67.5 million 101bp paired-end reads per sample. As normal dermal fibroblasts were

not available from these patients, we used publicly-available fibroblast RNA-seq expression

data[35] for comparison. Principal component analysis (PCA) between tumors, matched nor-

mal keratinocytes, and non-matched dermal fibroblasts was largely driven by differences

between normal keratinocytes and fibroblasts, with tumors falling between the two cell types

on PC1 (S1 Fig). PC2 reflected expression differences between normal cells of both types and

tumor tissue. Global gene expression in AFX was compared to publicly available expression

through The Cancer Genome Atlas (TCGA). AFX expression overlapped with other sarcomas,

and otherwise fell closest to cutaneous melanoma (Fig 3).

We used edgeR paired analysis on the matched tumor-normal samples to identify differen-

tially expressed genes (DEG) between AFX and keratinocytes. 8591 DEG were identified with

a FDR< 0.05, of which 3524 genes had a log2 fold-change (FC)> |2|. To account for the possi-

bility that these tumors are fibroblastic in origin, we ran edgeR (non-paired) against the pub-

licly-available dermal fibroblast samples. This analysis identified 4884 DEG using a FDR cutoff

of 0.05. We carried forward the intersection of both analyses (1446 DEG) for further investiga-

tion (S3 Table).

Multiple signaling pathways are dysregulated in AFX

To investigate gene dysregulation in AFX, Gene Set Enrichment Analysis (GSEA) was used

with the pre-ranked method on the 1446 DEG. There were 88 upregulated significantly

Fig 3. AFX gene expression clusters with other sarcomas. T-SNE plot of 8 AFX tumors with publicly available tumors from TCGA. AFX are highlighted

as black dots, clustering within other sarcomas (colored purple).

https://doi.org/10.1371/journal.pone.0188272.g003
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enriched pathways, and 59 downregulated significantly enriched pathways among Kegg, Reac-

tome, Biocarta, and Gene Ontology. Defense response, immune system, and GPCR ligand

binding were the most enriched pathways (S2 Fig). GSEA also identified significantly upregu-

lated KRAS signaling (MSigDB M5953; 0.001 FDR) and significantly downregulated p53
signaling (MSigDB M5939; 0.164 FDR). Several WNT pathway genes were identified as signifi-

cantly differentially expressed including WISP1 (4.89 log2 fold change (FC)), FZD1(1.59 log2

FC), PORCN (1.46 log2 FC), and SFRP(-2.67 log2 FC).

High tumor-associated macrophage response in AFX

To investigate the immune infiltrate, we analyzed the top ranking genes in the immune system

pathway (MSigDB M1045). These included MRC1 (macrophage mannose receptor 1) and

scavenger receptor (MSR1), providing evidence of an M2 macrophage population. The pattern

of gene expression was characteristic of a TAM infiltrate (Fig 4a). Several genes involved with

tumor macrophage recruitment[36] were significantly upregulated in AFX, including CCL5,

CCL3, CCL4, CCR1, and CCL18. Other genes involved in tumor promotion and extracellular

matrix remodeling were increased, including MMP2, MMP9, IL-10, and IL1B. (Fig 4a).

The TAM transcriptional signal was confirmed by flow cytometry on four additional pri-

mary AFX (Fig 5). CD206+ TAM were enriched in AFX as a proportion of CD45+HLADR

+CD14+CD163+ macrophages; and CD14+CD163+CD206+ macrophages are enriched as a

proportion of CD45+HLADR+ myeloid cells.

Fig 4. RNA sequencing reveals differentially expressed genes and pathways in AFX. (a) Heatmap of DE genes extracted from literature

reviews that are associated with TAMs (higher expression is red, while lower expression is shown as blue). (b) Heatmap of genes from the Hallmark

Epithelial Mesenychmal Transition Pathway from GSEA.

https://doi.org/10.1371/journal.pone.0188272.g004
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EMT response in AFX

EMT is indicated by an upregulation of mesenchymal markers with a downregulation of epi-

thelial markers[37]. PCA analysis indicated that overall gene expression of AFX tumors was

located on a spectrum between keratinocytes and fibroblasts (S1 Fig). Hallmark of EMT

(MSigDB M5930) pathway was highly upregulated with a normalized enrichment score of 2.89

and a FDR of 6.9E-5 (S2 Fig). Slug, a known inducer of EMT, was also upregulated in the AFX

tumors. Slug contributed to the core enrichment of the EMT pathway with a log2 fold-change

of 2.08 and a FDR of 1.22E-12. Other genes that contributed to the core enrichment are

POSTN (5.24 log2 FC), CTHRC1 (4.29 log2 FC), WIPF1 (3.19 log2 FC), ADAM12 (5.09 log2

FC), and LAMA1(3.73 log2 FC) (Fig 4b).

Discussion

AFX is a rare neoplasm of uncertain cellular origin. Our aim was to describe genomic muta-

tions and transcriptional changes in AFX, to lay the groundwork for larger studies in this rare

tumor. Exome sequence analyses revealed a high UV mutational burden, similar to other skin

cancers, including cSCC[38] and Merkel cell carcinoma[39]. A secondary aim of this work was

to address the hypothesis that AFX is a fusion-driven dermal sarcoma. Given the prevalence of

driver gene fusions in other sarcomas, we sought to identify fusion genes in AFX using a novel

sequence-based method for gene fusion detection, but none were identified.

We identified frequently mutated genes in AFX, including FAT1, COL11A1, CSMD3, and

ERBB4, and CNV analysis was consistent with prior report of deletions in chr9p and chr13q

[9]. Somatic mutations in tumor suppressor FAT1 have been linked to Wnt signaling, driving

cancer development[40]. We identified nonsense FAT1 mutations in 5/8 AFX tumors. Several

WNT pathway genes were significantly differentially expressed in AFX including WISP1,

Fig 5. M2 tumor-associated macrophages (TAM) are enriched in AFX. A. Schematic of successive gating strategy of live myeloid cells

expressing CD45 and HLADR. These were further gated on CD14+CD163+ to identify macrophages; CD206 expression was measured on this

subset. A representative sample is shown. B. CD206 expression in four AFX (blue) and patient-matched normal skin (red). C. CD206+ TAM are

enriched in AFX as a proportion of CD45+HLADR+CD14+CD163+ macrophages (left, p = 0.049); CD14+CD163+CD206+ macrophages are

enriched as a proportion of CD45+HLADR+ myeloid cells (right, p = 0.01).

https://doi.org/10.1371/journal.pone.0188272.g005
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FZD1, PORCN, and SFRP. These mutations and dysregulated genes suggest that FAT1 and

WNT signaling may play a role in the development or progression of AFX.

All eight AFX tumors had mutations in the structural collagen gene COL11A1, which is a

poor prognostic marker in lung, head and neck, and ovarian cancer[41–43]. Mutation in

COL11A1 has been reported in up to 75% of cSCC[44], and is associated with higher genome

mutation density in lung cancer [45], suggesting a role for genome destabilization. CSMD3
was mutated in 87.5% of AFX. This gene is mutated in over 80% of cSCC[44], and was previ-

ously identified as the second most mutated gene in non-small cell lung cancer, regulating cell

proliferation[46]. Mutations in both CSMD3 and COL11A1 are not specific to any one cancer

type, and these genes may be accruing mutations due to their long length. Future mechanistic

studies will be needed to see if CSMD3 and COL11A1 play a role in AFX.

CDKN2A and MTAP were co-deleted in AFX, and MTAP was significantly downregulated

(-1.33 log2 FC). CDKN2A and MTAP are often co-deleted due to their close proximity in

chr9p[47]. p19ARF, a product of CDKN2A, is known to block MDM2, resulting in dysregula-

tion of the p53 pathway[48]. Inactivation of CDKN2A is also thought to play a role in the cSCC

development[49]. Deletion of this locus, causing an inactivation of CDKN2A, could be the

cause of the downregulation of the p53 pathway in our AFX. Downregulation of the p53

pathway, CDKN1A (-1.855 log2 FC) and CDKN1B (-0.899 FC) suggests aberrant cell cycle

regulation.

RNA-seq analysis demonstrates expression-level similarities between AFX and other sarco-

mas, confirming the histopathologic classification. Despite finding no mutation or amplifica-

tion of the KRAS gene, genes upregulated by KRAS activation were enriched in AFX. Average

coverage of KRAS was 135X with 98% of targeted regions having at least 30X coverage, suffi-

cient to detect mutation. No mutations in KRAS were identified in RNASeq data. Future stud-

ies will investigate the mechanism of KRAS upregulation, but this finding suggests that AFX

may respond to therapy targeting Ras signaling.

Importantly, we observed upregulation of genes associated with TAM response in AFX

compared to normal skin. TAMs closely resemble M2 macrophages, promoting tumor devel-

opment and progression by activating pro-tumor immune responses, remodeling/degrading

the extracellular matrix, and stimulating proliferation[50,36,51]. TAM response is common

among cancers, but the bizarre macrophage pleomorphism in AFX suggests macrophage aty-

pia driving hyperproliferation of dermal fibroblasts. Pleomorphic AFX may represent the early

stage of carcinogenesis, followed by a longer-term spindled phase in which the macrophages

are no longer required to maintain fibrosis. Future studies will be required to address this

hypothesis, including investigation of individual cell types and the contribution of CDKN2A,

KRAS, AKT and FAT1 pathways in tumorigenesis. In addition, this tumor may serve as a

model for understanding TAM response and profibrotic macrophage-driven inflammatory

disease.

Our analyses also indicated an upregulation of EMT in AFX. EMT can be activated and

promote tumor progression through a variety of different pathways, including the AKT-
PI3K, RAS, ERK, MAPK, and FGF pathways[37]. It is curious to observe upregulation of

EMT in a tumor that is presumably mesenchymal to begin with. However, the phenomenon

is observed in other sarcomas such as Ewing sarcoma, in which a “metastable” phenotype

arises between epithelial and mesenchymal states[52,53]. Transition between states is

marked by shifts in EMT and mesenchymal to epithelial (MET) transition. Another potential

explanation is that AFX is derived from a dedifferentiated keratinocyte carcinoma, and the

EMT pathways observed result in fibrohistiocytic morphology. EMT is typically associated

with progression and metastasis, which is rare in AFX compared to other sarcomas. How-

ever, AFX do have metastatic potential, with recurrence rates between 5–16% and metastasis
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rates from 1–6%[54]. Though this is lower than soft tissue sarcomas, it is higher than that of

cutaneous squamous cell carcinoma and aligns with the intermediate histologic and tran-

scriptional phenotype.

A limitation of this study is that normal keratinocytes were used as controls. Tissue avail-

able for microdissection did not yield adequate RNA for analysis of patient-paired normal

fibroblasts. We addressed this by incorporating publicly-available fibroblast expression

data. Another limitation is the small number of tumors available for sequencing. Exome data

from a small number of rare tumors is typically not sufficient to identify driver mutations in

cancer, with MutSigCV, OncodriveFM, or OncodriveClust. When using these programs with

our dataset, FAT1 was identified as a potential driver by MutSigCV and OncodriveFM (p-

value < 0.05). However, the results were non-significant when accounting for multiple testing

due to a lack of statistical power (data not shown). However, atypical fibroxanthoma is an

extraordinarily rare tumor, and obtaining fresh tissue samples for sequencing is exceedingly

difficult. Our hope is that the initial data obtained here can justify larger studies using focused

analysis on archival tissue samples.

This work provides an initial genomic analysis of AFX and expands on previous studies in

this rare tumor. Our data suggest that this tumor is not a fusion-driven sarcoma, but rather

may be driven by an aberrant TAM response promoting fibrosis. Despite limitations associ-

ated with small sample size, we have identified putative genes and pathways that may be

involved in carcinogenesis. These data will inform future studies to elucidate the mechanisms

driving AFX that will ultimately lead to prognostic biomarkers or tumor-directed therapy.
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