118 research outputs found
A clinician’s guide to management of intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations
Dengue virus (DENV) causes disease in millions of people annually and disproportionately affects those in the developing world. DENVs may be divided into four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) and a geographical region may be affected by one or more DENV serotypes simultaneously. Infection with DENV may cause life-threatening disease such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), but more often causes less severe manifestations affecting a wide range of organs. Although many previous reports have explored the role of the different DENV serotypes in the development of severe manifestations, little attention has focused on the relative role of each DENV serotype in the development of cutaneous, respiratory, gastrointestinal, musculoskeletal, and neurological manifestations. We recruited a large group of participants from four countries in South America to compare the prevalence of more than 30 manifestations among the four different DENV serotypes. We found that certain DENV serotypes were often associated with a higher prevalence of a certain manifestation (e.g., DENV-3 and diarrhea) or manifestation group (e.g., DENV-4 and cutaneous manifestations)
Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway
Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients
The national burden of road traffic injuries in Thailand
Background: This study quantifies the burden of road traffic injuries (RTIs) in Thailand in 2004, incorporating new Thai data on mortality and the frequency and severity of long-term disability
Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions
Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here.Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. is a promising step for further application of the proposed method
Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae
The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry
Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells
The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …