792 research outputs found

    Controls upon the Last Glacial Maximum deglaciation of the northern Uummannaq Ice Stream System, West Greenland

    Get PDF
    The Uummannaq Ice Stream System (UISS) was a convergent cross-shelf ice stream system that operated in West Greenland during the Last Glacial Maximum (LGM). This paper presents new evidence constraining the geometry and evolution of the northern sector of the UISS and considers the factors controlling its dynamic behaviour. Geomorphological mapping, 21 new terrestrial cosmogenic nuclide (TCN) exposure ages, and radiocarbon dating constrain LGM warm-based ice stream activity in the north of the system up to 1400 m a.s.l. Intervening plateaux areas either remained ice free, or were covered by cold-based icefields. Beyond the inner fjords, topography and bathymetry forced ice flow southwards into the Uummannaq Trough, where it coalesced with ice from the south, and formed the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP. Rapid retreat from the LGM limit was forced by an increase in air temperatures and rising sea level, enhanced by the bathymetric over-deepening of the Uummannaq and Igdlorssuit Sund troughs. Ice reached the inner fjord confines in the northern Uummannaq area by 11.6 ka and experienced an ice marginal stabilisation in Rink–Karrat Fjord for up to 5 ka. This was a function of topographic constriction and bathymetric shallowing, and occurred despite continued climatic forcing. In the neighbouring Ingia Fjord this did not occur. Following this period of stability, ice within Rink–Karrat Fjord retreated, reaching the present ice margin or beyond after 5 ka. The presence of a major ice stream within a mid-fjord setting, during the mid-Holocene and the Holocene Thermal Maximum (∼11–5 ka) is in direct contrast to records of other ice streams throughout West Greenland, which suggest ice had retreated beyond its present margin by 9–7 ka. This demonstrates the potential importance of topographic control on calving margin stability, and its ability to override climatic forcing

    Composite Higgs from Higher Representations

    Full text link
    We investigate new models of dynamical electroweak symmetry breaking resulting from the condensation of fermions in higher representations of the technicolor group. These models lie close to the conformal window, and are free from the flavor-changing neutral current problem despite small numbers of flavors and colors. Their contribution to the S parameter is small and not excluded by precision data. The Higgs itself can be light and narrow.Comment: 4-pages, 2-columns, RevTex. Final version to appear on Physics Letters

    The geomorphological record of an ice stream to ice shelf transition in Northeast Greenland

    Get PDF
    ACKNOWLEDGEMENTS This work was funded through NERC Standard Grant NE/N011228/1. We thank the Alfred Wegner Institute, and particularly Angelika Humbert and Hicham Rafiq, for their logistic support through the iGRIFF project. Further support was provided from Station Nord (Jorgen Skafte), Nordland Air, Air Greenland, and the Joint Arctic Command. Naalakkersuisut, Government of Greenland, provided Scientific Survey (VU-00121) and Export (046/2017) licences for this work. We thank Chris Orton for help with production of figures. Finally, we would like to thank our Field Ranger Isak (after which Isakdalen is informally named) and dog Ooni for keeping us safe in the field. We thank Rob Storrar and an anonymous reviewer for their comments which helped improve the manuscript.Peer reviewedPublisher PD

    Holocene history of the 79°N ice shelf reconstructed from epishelf lake and uplifted glaciomarine sediments

    Get PDF
    Nioghalvfjerdsbrae, or 79∘ N Glacier, is the largest marine-terminating glacier draining the Northeast Greenland Ice Stream (NEGIS). In recent years, its ∼ 70 km long fringing ice shelf (hereafter referred to as the 79∘ N ice shelf) has thinned, and a number of small calving events highlight its sensitivity to climate warming. With the continued retreat of the 79∘ N ice shelf and the potential for accelerated discharge from NEGIS, which drains 16 % of the Greenland Ice Sheet (GrIS), it has become increasingly important to understand the long-term history of the ice shelf in order to put the recent changes into perspective and to judge their long-term significance. Here, we reconstruct the Holocene dynamics of the 79∘ N ice shelf by combining radiocarbon dating of marine molluscs from isostatically uplifted glaciomarine sediments with a multi-proxy investigation of two sediment cores recovered from Blåsø, a large epishelf lake 2–13 km from the current grounding line of 79∘ N Glacier. Our reconstructions suggest that the ice shelf retreated between 8.5 and 4.4 ka cal BP, which is consistent with previous work charting grounding line and ice shelf retreat to the coast as well as open marine conditions in Nioghalvfjerdsbrae. Ice shelf retreat followed a period of enhanced atmospheric and ocean warming in the Early Holocene. Based on our detailed sedimentological, microfaunal, and biomarker evidence, the ice shelf reformed at Blåsø after 4.4 ka cal BP, reaching a thickness similar to present by 4.0 ka cal BP. Reformation of the ice shelf coincides with decreasing atmospheric temperatures, the increased dominance of Polar Water, a reduction in Atlantic Water, and (near-)perennial sea-ice cover on the adjacent continental shelf. Along with available climate archives, our data indicate that the 79∘ N ice shelf is susceptible to collapse at mean atmospheric and ocean temperatures ∼ 2 ∘C warmer than present, which could be achieved by the middle of this century under some emission scenarios. Finally, the presence of “marine” markers in the uppermost part of the Blåsø sediment cores could record modern ice shelf thinning, although the significance and precise timing of these changes requires further work

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore