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Abstract 

The Uummannaq ice stream system (UISS) was a convergent cross-shelf ice stream system that 

operated in West Greenland during the Last Glacial Maximum (LGM). This paper presents new 

evidence constraining the geometry and evolution of the northern sector of the UISS and 

considers the factors controlling its dynamic behaviour. Geomorphological mapping, 21 new 

terrestrial cosmogenic nuclide (TCN) exposure ages, and radiocarbon dating constrain LGM 

warm-based ice stream activity in the north of the system up to 1400 m a.s.l.  Intervening 

plateaux areas either remained ice free, or were covered by cold-based icefields.  Beyond the 

inner fjords, topography and bathymetry forced ice flow southwards into the Uummannaq 

Trough, where it coalesced with ice from the south, and formed the trunk zone of the UISS. 

  

Deglaciation of the UISS began at 14.9 cal. kyr BP.  Rapid retreat from the LGM limit was forced 

by an increase in air temperatures and rising sea level, enhanced by the bathymetric over-

deepening of the Uummannaq and Igdlorssuit Sund troughs.  Ice reached the inner fjord 

confines in the northern Uummannaq area by 11.6 kyr and experienced an ice marginal 

stabilisation in Rink-Karrat Fjord for up to 5 kyr. This was a function of topographic constriction 

and bathymetric shallowing, and occurred despite continued climatic forcing.  In the 

neighbouring Ingia Fjord this did not occur.  Following this period of stability, ice within Rink-

Karrat Fjord retreated, reaching the present ice margin or beyond after 5 kyr.  The presence of a 

major ice stream within a mid-fjord setting, during the mid-Holocene and the Holocene Thermal 

mailto:timothy.lane@lgp.cnrs.fr


Maximum (~11 – 5 kyr) is in direct contrast to records of other ice streams throughout West 

Greenland, which suggest ice had retreated beyond its present margin by 9-7 kyr.  This 

demonstrates the potential importance of topographic control on calving margin stability, and 

its ability to override climatic forcing. 
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1. Introduction and rationale 

 

Large ocean terminating outlet glaciers play a vital role in moderating the behaviour of 

Greenland Ice Sheet (GIS), as indicated by  recent rapid changes in outlet glaciers dynamics (e.g. 

Howat et al., 2007, 2008, 2011, Holland et al., 2008, Rignot et al., 2011, Thomas et al., 2009, 

2011, Joughin et al., 2012).  This dynamic behaviour is typified by thinning (Rignot et al., 2011; 

Kjær et al., 2012) and increased discharge via calving (Howat et al., 2007) and  has been closely 

linked to increases in air and ocean temperature, though causative processes vary and remain 

to be fully  understood (Thomas, 2004, Howat et al., 2008, Holland et al., 2008, Nick et al., 2009, 

Vieli and Nick, 2011). This lack of process understanding, and short record of glacier behaviour 

(<20 years) makes accurate prediction of outlet glacier response to changing climate difficult. 

 

In order to provide a longer-term record of Greenland outlet glacier behaviour, recent work has 

focused on the understanding of large ice streams and their influence upon the Greenland Ice 

Sheet (GIS) over thousand year timescales.  New constraints upon ice stream extent, thickness, 

and deglacial behaviour from the LGM to present have been established since the early 2000’s 

both onshore (Bennike and Bjorck, 2002, Håkansson et al., 2007, Håkansson et al., 2009, 

Roberts et al., 2008, Roberts et al., 2009, Roberts et al., 2010, Roberts et al., 2013) and offshore 

(Ó Cofaigh et al., 2004, 2013a, 2013b, Evans et al., 2009, Dowdeswell et al., 2010).  These have 

provided evidence for the existence of large ice streams across the West, Northeast and East 

Greenland continental shelves during the last glacial cycle (Lykke-Andersen, 1998, Ó Cofaigh et 

al., 2004, 2013a, Evans et al., 2009, Dowdeswell et al., 2010). 

 

In Greenland, it is thought that large ice streams developed through the coalescence of 

individual outlet glaciers in fjord settings in the coastal zone resulting in convergence and flow 

onto the continental shelf (Roberts et al., 2010).  These large-scale, coalescent ice streams are 

likely to have dominated drainage from the GIS throughout Quaternary glaciations, particularly 

in favourable topographic or geological settings (Swift et al., 2008, Roberts et al., 2013).  Based 

upon the presence of cross-shelf submarine troughs, it has been hypothesised that six such 

palaeo-ice stream systems controlled West GIS behaviour during the last glacial cycle and 

previous glacial periods (Roberts et al., 2010).  Despite the increase in research, evidence of ice 

stream activity in these regions is often fragmentary, and thus far studies have been unable to 

provide complete on and offshore reconstructions of last glacial cycle to present ice stream 

behaviour.  Due to their hypothesised size, ice flux, and distribution, ice streams of this scale 

must be understood in order to accurately reconstruct ice sheet configuration during previous 

glacial periods and to understand ice sheet interactions with sea level, climate, and topography. 



 

This paper presents evidence from the northern sector of the Uummannaq Ice Stream System 

(UISS), central West Greenland.  The aims of this paper are: (i) to present new terrestrial 

geomorphological and geochronological evidence from the northern sector of the UISS in order 

to reconstruct its LGM geometry and subsequent evolution; (ii) to use these data in conjunction 

with evidence from offshore and the southern sector of the UISS to understand shelf-wide ice 

stream dynamics during deglaciation. 

 

 

2. The Uummannaq Region 

2.1. Topography and geology 

The Uummannaq region covers an area of ~25,000 km2 and is highly mountainous, with 

summits reaching >2000 m a.s.l. (Figure 1).  The region is bounded to the north and south by the 

peninsulas of Svartenhuk and Nuussuaq respectively (Figure 1).  These landmasses form large 

topographic barriers, which confines the flux of ice and water from the inner Uummannaq 

region through the narrow passages to the north and south of Ubekendt Ejland.  Within this 

landscape the regional-scale topography is characterised by a series of deep coalescent fjords, 

broadly running east to west (Figure 1).  The fjord heads are occupied by marine-terminating 

outlet glaciers which drain the central West GIS.  The fjords are of variable depth, with the 

majority reaching at least 500 m, and some reaching over 1100 m, and are interspersed with 

numerous sills and areas of localised shallow bathymetry. 

 

Central West Greenland currently has the highest concentration of outlet glaciers in Greenland 

(Reeh, 1985, Velicogna and Wahr, 2006).  The Uummannaq region contains 11 major outlet 

glaciers of varying size and discharge, the largest of which are Rink Isbræ in the north and Store 

Gletscher in the south.  Respectively these produce 10.5-16.7 km3 a-1 and 13.2-17.5 km3 a-1 of ice 

that is calved into the ocean (Table 1) (Rignot and Kanagaratnam, 2006).  Variability in 

subglacial topography, width, and drainage basin size is reflected in the variable ice flux they 

produce.  Subglacial ice sheet topography in the southern Uummannaq region (areas south of 

Kangerlussup sermia) (Figure 1) is typically <700 m a.s.l. (Bamber et al., 2001).  However, the 

northern Uummannaq region is bounded by an extensive sub-glacial mountain range at ~72°N 

(Bamber et al., 2001).  The topography of this area is >900 m a.s.l., and this high terrain persists 

for at least 200 km inland, restricting the influx of ice from the north into the northern 

Uummannaq region. 

 



The geology of the region is characterised by three distinct geological areas, separated by north 

to south running faults (Figure 2).  The east of the region is underlain by Precambrian gneisses 

(Archean orthogneisses - ~2800 Ma), and forms the inner fjords (Garde and Steenfelt, 1999) 

(Figure 2).  These are overlain by Paleoproterozoic sediments (~2000 Ma) in the north 

(Kalsbeek et al., 1998, Bonow et al., 2007).  The centre of the Uummannaq region is formed of 

Cretaceous-Tertiary marine mudstones and sandstones (Pedersen and Pulvertaft, 1992, Dam et 

al., 2000, Henriksen et al., 2000). Finally, to the west are a series of Palaeocene basalts (61-52.5 

Ma), which lie on- and offshore, forming Ubekendt Ejland, Svartenhuk, and the western half of 

Nuussuaq (Henriksen et al., 2000). 

 

2.2. Current palaeo-glaciological understanding of the Uummannaq system 

Until recently, the glacial history of much of the Uummannaq region was poorly known, with 

previous work showing the Uummannaq region to be dominated by intensely focused selective 

linear erosion and areally scoured terrain, with smaller isolated occurrences of valley glaciers 

and cold-based ice caps (Sugden, 1974).  Based upon moraines, trimline elevations, and 

blockfields in the Svartenhuk region, a reconstructed LGM ice sheet ice thickness of 450 m a.s.l. 

was proposed for the northern Uummannaq region (Kelly, 1985), suggesting that ice reached 

just beyond Ubekendt Ejland.  This estimate is considerably lower than reconstructed LGM ice 

thicknesses in other areas of West Greenland which are >750 m a.s.l. (Rinterknecht et al., 2009, 

Roberts et al., 2009).  Based upon the convergent inner fjord system, and densely clustered 

outlet glaciers, it has recently been proposed that the region fostered a large ice stream system 

(the UISS) during the last glacial cycle (Ó Cofaigh et al., 2013a, 2013b, Roberts et al., 2013).  The 

UISS extended to the continental shelf edge during the last glacial cycle, depositing sediment on 

the outer shelf at the trough mouth fan.  This is supported by offshore bathymetry which 

displays evidence for a deep (>600 m) trough, containing ubiquitous, elongate bedforms 

indicative of fast flowing ice (Ó Cofaigh et al., 2013b).   

 

Geomorphological data, surface exposure ages, and modelling have demonstrated that during 

the last glacial cycle the  southern UISS ice reached a minimum of 1266 m a.s.l. in fjord head 

regions (Roberts et al., 2013), at least double that of earlier estimates from the northern 

Uummannaq region (Kelly 1985).  Initial retreat from the Uummannaq trough mouth fan was 

underway by 14.9 cal. kyr BP (Ó Cofaigh et al., 2013b), reaching the southern inner fjords by 

11.4 kyr and retreating beyond the present ice margin by 8.7 kyr (Roberts et al., 2013).  This 

retreat is thought to have been driven by post-LGM rising relative sea-level and air 

temperatures, the influx of warmer oceanic water and topographic pinning throughout the 

inner fjords (Ó Cofaigh et al., 2013b, Roberts et al., 2013, McCarthy, 2011).  Despite this new 



chronology for the southern UISS, the glacial history of the northern Uummannaq region is 

constrained by a single radiocarbon date on eastern Svartenhuk, indicating deglaciation to the 

fjord margins at 10.5 cal. kyr BP (Bennike, 2000).  As a result, the response of the GIS in the 

northern Uummannaq region to climate forcing, and its relationship to the southern sector 

remains unknown. 

  

2.3. Northern Uummannaq region 

The northern sector of the Uummannaq region includes fjords containing the outlet glaciers 

Ingia Isbræ, Umiámáko Isbræ, Rink Isbræ, and Kangerdlugssup sermerssua which discharge ice 

to the north of Ubekendt Ejland and  into Igdlorssuit Sund (Figures 1 and 3).  During the last 

glacial cycle, these outlet glaciers would have extended beyond their inner fjord confines, 

becoming confluent to the northeast of Ubekendt Ejland (Roberts et al., 2013).  Bathymetric 

data indicates a shallow sill to the north of Ubekendt Ejland, with water depths of <100 m.  This 

would have significantly reduced ice flow between Svartenhuk and Ubekendt Ejland (Roberts et 

al., 2013), forcing ice southwards into the deeper Igdlorssuit Sund.  Here it would have become 

coalescent with ice the from southern region of Uummannaq, and flowed offshore into the 

Uummannaq Trough (Roberts et al., 2013). 

 

 

This study focuses upon two fjords in the northern Uummannaq region, Rink-Karrat Fjord 

(including Rink Fjord, Karrat Fjord, and Umiámáko Fjord), and Ingia Fjord (see Figures 1 and 3).  

The fast-flowing outlet Rink Isbrae drains into the head of Rink-Karrat Fjord and is the highest 

discharging outlet glacier in the northern Uummannaq region (Rignot and Kanagaratnam, 

2006). Rink Fjord is joined by Umiámáko Fjord and becomes Karrat Fjord.  Rink-Karrat Fjord is 

a 6-10 km wide, overdeepened glacial trough, with depths reaching 1200 m close to the present 

ice margin.  Water depths decrease to <680 m south of Karrat Island, and reach a shallow sill at 

<200 m north of Karrat Island.  The fjord is bounded to the north and south by mountainous 

terrain and plateaux up to 2000 m a.s.l., with near-vertical fjord walls.  High level surfaces foster 

small icecaps, icefields, and individual cirque and valley glaciers.  Ingia Fjord is a narrow (3-6 

km wide) fjord into which Ingia Isbræ calves, with a discharge of 1.1 km3 yr-1, an order of 

magnitude less that Rink Isbræ (10.5-16.7 km3 yr-1; Rignot and Kanagaratnam, 2006).  Fjord 

walls are near vertical, and landsurfaces between fjords contain high level dissected plateaux ice 

fields up to 2000 m a.s.l.  Fjord depths through Ingia Fjord are currently unknown. 

 

3. Methods  

3.1. Geomorphological mapping 



Initial geomorphological mapping was carried out using 1:50,000 topographic maps, geological 

maps (Henderson and Pulvertaft, 1987a, 1987b), 1:150,000 aerial photographs (Kort and 

Matrikelstyrelsen) and ASTER GDEMs. Ground-truthing was carried out in the Northern 

Uummannaq region (Figure 1), where features of glacial erosion (e.g. striae, glacially smoothed 

bedrock, roches moutonnées and whalebacks) were mapped in order to allow palaeo-ice flow 

reconstructions (Glasser and Warren, 1990, Roberts and Long, 2005).  Moraines and trimlines 

were mapped in order to constrain glacier geometry and to identify the upper ice 

surface/englacial thermal boundaries (Fabel et al., 2012), allowing regional ice thicknesses to be 

calculated (e.g. Kelly, 1985, Roberts et al., 2009).  Glacial, periglacial, and fluvial landforms were 

mapped using a Garmin GPS 60, to accurately represent their form, length and profile 

(horizontal error of ±5 m, elevation error of ±5-10 m). Bathymetric estimates are derived from 

the local Hareø-Prøven bathymetric charts. 

 

3.2. Terrestrial cosmogenic nuclide (TCN) dating 

3.2.1. Rock sampling for terrestrial cosmogenic nuclide dating 

Samples were taken for TCN dating from bedrock and erratic boulders at a variety of altitudes in 

order to constrain last glacial cycle ice stream geometry.  Bedrock samples were taken from 

areas displaying clear evidence of glacial erosion (e.g. roches moutonnées or whalebacks), or 

from surfaces displaying striae or glacial polish to minimise the likelihood of cosmogenic 

inheritance (Gosse and Phillips, 2001).  Samples from erratic boulders were taken when the 

boulder demonstrated clear evidence of subglacial erosion (i.e. subrounded to subangular; 

faceted, striated).  Where possible, vertical sample transects were taken at altitudinal intervals 

of 100 m in order to provide an upper limit on warm-based ice.  This was achieved on Karrat 

Island, with samples across the island (KA2, 6, 9, 10, 11, 15, 17, 18, 19), and in inner Rink Fjord 

(KA3, 20, 21, 23) (See Figure 6 for locations).  However, though samples were taken this 

transect was limited by the number of analyses available to the project.    In order to create a 

deglacial chronology, samples were also taken in a flow parallel transect from Karrat Island to 

the present margin of Rink Isbræ.  To date features indicative of major ice marginal events (e.g. 

moraines), samples were taken from clearly glacially abraded terrain either side of the feature.  

Ideally samples would also be taken from boulders on the crestlines of moraines; however, due 

to potential problems with exhumation no boulder samples were taken from moraines.  

Samples were collected using a Stihl TS400 disc cutter and sampling procedures followed Gosse 

and Phillips (2001) and Roberts et al. (2013, 2008). 

 

3.2.2. Terrestrial cosmogenic nuclide sample preparation 



The sample preparation and 10Be/26Al measurement procedures used in this study are 

described in detail in by both Wilson et al. (2008) and Ballantyne et al. (2009).  A 250 μg Be was 

added as a carrier to each sample in this study. A very low 10Be/Be solution from phenakite 

was used as carrier. This solution was provided by F. von Blanckenburg (University of Hanover) 

and it is widely used (see Merchel et al., 2008,).  Inherent Al concentrations in quartz were 

determined with an ICP-MS at the NERC Cosmogenic Isotope Analysis Facility (CIAF), with a 

relative standard uncertainty of 3%. Al carrier was added to samples so that 2 mg Al per sample 

was reached.  Samples KA12, KA16 and KA24 did not yield enough quartz to be processed for 

both 10Be and 26Al measurement.  As a result, these are not included in this study. 

 

3.2.3. 10Be and 26Al measurements and exposure age calculation 

The measurement procedures at the NERC AMS laboratory are described in detail in Maden et 

al. (2007) and Roberts et al. (2008).  10Be/9Be and 26Al/27Al ratios were measured with the 5MV 

NEC Pelletron accelerator mass spectrometer at the SUERC, as part of a routine Be and Al runs. 

10Be and 26Al concentrations are based on 2.79 · 10−11 10Be/Be and 4.11 · 10−11 26Al/Al ratios for 

NIST SRM4325 and Purdue Z92-0222 standard respectively (see Dunai and Stuart, 2009).  

Exposure ages were calculated using the CRONUS-Earth online calculator (Balco et al., 2009, 

2008) (Calibration data set name: North-eastern North America. Calibration wrapper version: 

2.2-cal-dev. Objective function version: 2.2-dev. Age calculation version: 2.1. Muon calculation 

version: 1.1. Constants version: 2.2), to get ages based on a sea-level high-latitude production 

rate of 3.968±0.15 atoms g-1 yr-1 for the ‘St’ scaling scheme, according to for Young et al. (2013).  

It should be noted that this new Baffin Bay and Arctic 10Be production rate is indistinguishable 

from the north-eastern North America (NENA) 10Be production rate (Young et al., 2013b). See 

Roberts et al. (2013) for a full description of this procedure 

 

. Attenuation correction for sample thickness uses an attenuation length of 160 g cm-2. 

Topographic shielding correction is determined using the ratio of the production rate at the 

obstructed site to the production rate at a site at the same location and elevation, but with a flat 

surface and a clear horizon (Gosse and Phillips, 2001, Balco et al., 2008).  The exposure ages are 

not corrected for past geomagnetic field variations. Including a simple palaeomagnetic 

correction (Nishiizumi et al., 1989) results in ages ~ 1% older ages than presented for the 

samples with an exposure age of ~ 10 kyr. Age determinations include a correction for 

atmospheric pressure related to the altitude, latitude and longitude according to the mean 

global surface atmospheric pressure field of the NCEP-NCAR re-analysis 

(www.cdc.noaa.gov/ncep_reanalysis/), but assume the standard atmosphere for geographical 

scaling of the production rate.  



 

Paired 10Be and 26Al analysis was carried out on several samples (KA1-6) in order to test for 

complex exposure and shielding histories from high elevations (Gosse and Phillips, 2001).  

26Al/10Be concentration ratios are not depleted with respect to surface production rate ratios 

within a one-sigma, and there is approximate concordance in 26Al and 10Be ages.  All TCN ages 

are given in thousands of years (kyr), meaning thousands of years before sample collection; AD 

2010 (Balco et al., 2008). TCN data is presented following the guidelines outlined by Dunai and 

Stuart (2009), in order to allow the use of this data in the future.  

 

 

3.2. Lake coring 

A number of lakes >2.5 m deep were identified from aerial photographs and chosen as targets 

for sediment coring.  An initial series of cores were taken in order to establish the lake 

stratigraphy.    Core samples to be used for laboratory analysis were taken using Russian-type 

(50 cm in length) and Eijkelkamp Beeker-type (100c m in length).  A Geotek Multi Sensor Core 

Logger (MSCL) was then used to record core properties.  Linescan images were recorded using 

the MSCL’s line scan camera.  Magnetic susceptibility was measured using a Bartington point 

sensor (MS2E), and gamma density was measured using a Caesium-137 gamma source.   

 

3.3. Radiocarbon dating 

Material for radiocarbon dating was sub-sampled from lake cores in Karrat Lake and Ingia Lake.  

Radiocarbon analysis was carried out by the NERC Radiocarbon facility (samples KaL1 and 

InL1).  Results presented have been corrected to δ13C VPDB‰ -25 using δ13C values measured 

for each sample.  The δ13C values were measured on a dual inlet stable isotope mass 

spectrometer (Thermo Fisher Delta V) and represent the δ13C in the original, pre-treated sample 

material.  InL1 was composed of plant macrofossils and KA1 and SV1 of lake gyttja.  Both were 

sampled from above the contact with lower minerogenic clays and overlying organic lake gyttja 

in their respective cores. Radiocarbon ages are presented as a 2σ range of calibrated years 

before present (cal. yrs BP).  Ages were calibrated using OxCal 4.2 and the IntCal09 calibration 

curve.  The lakes samples do not lie within a carbonate catchment, and as a result no reservoir 

correction was applied. 

 

3.4. Bayesian analysis of deglacial chronology 

In order to rigorously constrain the deglaciation of the northern UISS, Bayesian statistics were 

applied.  This approach allows chronological information to be combined in a probabilistic 

nature, using prior knowledge (Bronk Ramsey, 2008).  This incorporates chronological data 



with information about the distance from present ice margin (or more conventionally, depth 

down a sedimentary profile).  Through Markov Chain Monte Carlo (MCMC) sampling this forms 

a probability distribution of dates through the sequence (Gilks et al., 1995, Bronk Ramsey, 

2009). These are expressed as age cumulative probability functions representing the likelihood 

of each sample’s age (Bronk Ramsey, 2009).  Bayesian analysis of chronological sequences has 

widely been used to provide coherent frameworks for radiocarbon dates through sedimentary 

sequences (Gilks et al., 1995, Bronk Ramsey, 2009), however, it is not commonly used for 

constraining a deglacial chronology (Chiverrell et al., 2013).  Despite this, the principles of 

constraining a deglacial transect are similar to a sedimentary sequence, with distance from 

present ice margin substituted for depth through a profile.  Their age probability distribution 

can therefore be used with their “stratigraphic” position (i.e. distance from ice margin) to 

constrain the age model.  For this study, a Poisson Sequence has been used, as it allows for 

flexibility, permitting the depositional/retreat process to be inherently random (Bronk Ramsey, 

2008), though with a given position for each age. 

 

4. Results 

Results are presented by fjord location: Rink-Karrat Fjord; and Ingia Fjord.  Due to the 

complexity of the data from Rink-Karrat Fjord, this has been subdivided into four geographically 

distinct regions within the fjord: inner Fjord; Qeqertarssuaq; Nuugaatsiaq; and Karrat Island 

(see Figure 3).  These sections outline both geomorphological and chronological results from 

the study. 

 

4.1. Rink-Karrat Fjord: inner fjord 

4.1.1. Geomorphology 

In the inner fjord areas below 700-800 m a.s.l. were dominated by intense areally scoured 

terrain, displaying ubiquitous features of glacial erosion (roches moutonnées, p-forms, striae 

and glacially abraded surfaces) (Figures 3, 4a,  4b).  A poorly developed moraine was identified 

at ~740 m a.s.l., formed of sub-angular gravel which contained abundant erratic quartzite 

material (Figure 4c).  Two sets of small (6-10 m in width, 2-4 m high, and >500 m in length), 

poorly developed lateral moraines were mapped on the spur between Rink and Umiámáko 

Fjords (Figure 5).  One moraine set records ice activity within Rink Fjord (R1 – R3, Figures 4d 

and 5), and moraines run sub-parallel to one another, at 366-235 m a.s.l.  The second set (Um1 – 

Um3) lies on the spur between the two fjords, running obliquely downhill at 192-137 m a.s.l. 

(Figure 5).  All moraines are formed of coarse, sub-angular to sub-rounded diamictic material, 

containing both local and erratic lithologies.  No continuations of these moraines were observed 



in Umiámáko Fjord, probably due to the near vertical relief of the fjord walls.  Striae mapped 

from bedrock surfaces below 400 m a.s.l. are sub-parallel to macro-scale fjord topography, 

recording ice flow northeast to southwest (Figure 4a).  Striae directions from between Rink and 

Umiámáko Fjord show evidence for cross cutting flow across the spur, likely reflecting 

differential response of each margin during deglaciation. 

  

Above 800 m a.s.l. areally scoured terrain transitioned into heavily weathered and frost 

shattered bedrock.  Surfaces between 1000 and 1400 m a.s.l. were dominated by frost 

shattering, but a number of small (<10 m2) flat, bedrock outcrops were found, displaying 

evidence for glacial abrasion (Figure 4e).  Above 1400 m a.s.l., intact in-situ bedrock blocks 

become very rare, and the land surface characterised by autochonous blockfield (Figure 4f). 

 

4.1.2. Chronology 

Two samples for TCN dating were taken at high elevations within the inner fjord, KA3 and KA5 

(Figure 6, Table 2).  KA3 was a glacially smoothed bedrock surface at 1400 m a.s.l., and returned 

ages of 18.9±1.9 10Be kyr (Table 3), and 22.5±1.4 26Al kyr (Table 4).  KA5 was taken from an in-

situ bedrock block found within an area of extensive autochonous blockfield at 1964 m a.s.l.  

This returned an age of 92.0±8.8 10Be kyr (Table 3) and 96.1±2.9 26Al kyr (Table 4), suggesting 

the surface had experienced minimal erosion during MIS4-2.  Four low elevation TCN samples 

were taken from the inner fjord, from 110 – 400 m a.s.l.  These were three glacially abraded 

bedrock surfaces (KA21, KA23 and KA27) and an erratic boulder (KA20) (Figure 6).  These 

returned ages of 6.6±1.1 10Be kyr (KA27), 5.3±0.5 10Be kyr (KA21), 5.2±0.7 10Be kyr (KA20), and 

5.0±0.6 10Be kyr (KA23) (Table 3).  The geomorphological and chronological data constrain the 

upper limit of warm-based ice during the last glacial cycle to between 1400 and 1964 m a.s.l. 

 

4.2. Qeqertarssuaq 

4.2.1. East Qeqertarssuaq: geomorphology 

Qeqertarssuaq is a 165 km2 island near the edge of the inner fjord (Figure 3).  High altitude 

areas were characterised by an extensive frost shattered surface, with small valley glaciers 

found on the northwest of the island.  A number of small, infrequent bedrock outcrops were 

found protruding from this mantling of frost shattered material (Figures 7a - 7c).  In places the 

upper faces of the bedrock outcrops are glacially abraded, displaying striae.  The largest of these 

bedrock outcrops was found at 1040 m a.s.l. (71.63°N 52.90°W), with striae recording ice flow 

directions of 173 ˚-353˚ (set 1) and 87˚-267˚ (set 2) (Figure 8a).  Detailed inspection of the striae 

and their cross cutting relationship was not able to resolve their chronological relationship.  

However, based upon an increasing degree of topographic control during deglaciation, it is 



thought that striae set 1 were formed prior to set 2.  Regardless of the striae age relationship, 

this demonstrates warm-based ice above this altitude (1040 m a.s.l.) during the last glaciation.  

A sample was taken from this location for TCN dating (KA24).  However, once processed, there 

was insufficient quartz in the 125 – 500 µm size fraction to allow etching and successful 

beryllium recovery.  A subdued, poorly developed ridge runs northeast to southwest on the 

southern edge of the island (Figure 8a), terminating at the edge of the broad col which covers 

the centre of the island.  The ridge is composed of loose, angular pebbles and cobbles, 

dominated by local lithologies with occasional erratics.  This is interpreted as a lateral push 

moraine, where fjord ice has overtopped the topography. 

 

Above ~800 m a.s.l. the western flank of Qeqertarssuaq was characterised by extensive frost 

shattered material formed of locally derived angular to sub-angular material.  Below this, lower 

elevation terrain fostered a series of 12 subparallel ridges, with smaller fragmentary ridges 

between them (Figures 7e and f – and see inset location in Figure 3).  These are formed of sub-

angular to sub-rounded clasts, and are clearly of different lithological composition to higher 

altitude scree.  The highest of the ridges (ridge Q1) is found at 786 m a.s.l. and is also the most 

distinct, reaching 6-8 m high (Figure 7d).  Upslope of Q1 is a large (5 m wide), bedrock incised 

channel (Figure 7d).  As a result of these observations, the 12 ridges and fragments between 

them (found from 786 to 340 m a.s.l.) are interpreted as a lateral moraine staircase.  Due to a 

lack of boulders displaying clear evidence of subglacial rounding, and the absence of abraded 

bedrock, no surface exposure samples were taken from this site. 

 

4.2.2. Nuugaatsiaq, southwest Qeqertarssuaq 

Nuugaatsiaq is an 18 km2 low elevation (<180 m a.s.l.) and low relief peninsula on the 

southwest side of Qeqertarssuaq (Figure 1).  The peninsula is bordered to the north by a near 

vertical wall rising to 1400 m a.s.l.  Three ridges of varying preservation were mapped on the 

eastern side of the peninsula, at 10-30 m a.s.l. (N1), 55-70 m a.s.l. (N2) and 120-133 m a.s.l. (N3) 

(Figure 8).  These were formed of diamictic material, dominated by sub-angular to sub-rounded 

clasts, and interpreted as a series of lateral moraines.  A further, more fragmentary moraine was 

found at the break of slope between the peninsula and fjord wall (N4 – 260 m a.s.l.), displaying 

evidence of extensive post-depositional rock glacierisation (Figure 8).  Moraines N1-N3 are 

found sub-parallel to the present coastline (Figure 8a), and continued to the northeast, 

following the base of the Qeqertarssuaq Island for 5km (Figure 8b).  Although slopes are 

mantled by a thick scree cover, this is clearly discernible from the lighter coloured morainic 

material (Figure 8).  Striae mapped from bedrock outcrops west of N3 (71.56°N 53.13°W) 

displayed cross cutting flow directions of 58°-238° (1) and 20°-200° (2).  The first of these 



suggests ice flow concordant with fjord morphology (east-northeast to west-southwest).  

Contrastingly, the second set of striae suggests ice overriding the region from a north-eastern 

source.  This is similar to other ice directional indicators found at higher altitude on eastern 

Qeqertarssuaq.  

 

The terrain drops in elevation to the west of N3 (Figure 8b) to a region of low relief bedrock 

knolls and areas of flat topped sediment infills (at ~90 m a.s.l.).  Terrain rises to the north, west 

and southwest of this depression, enclosing a small shallow basin (~2-4 km2).  Extensive 

sediments at least 2 m thick were found throughout the depression, bounded to the east by 

moraine N3.  Some evidence of cryoturbation is present in the upper 30 cm of the sequence, but 

the majority of sediments are characterised by interbedded fine sand and clayey silt, displaying 

un-deformed, in-situ planar and ripple cross bedding.  The sediments appear well-sorted, with 

few granules and no pebbles, suggestive of a relatively low-energy depositional environment.  

The sediments show no deformation (other than cryoturbation), suggesting deposition 

following the most recent regional deglaciation.  Geomorphological and sedimentological 

evidence suggests that the sediments were deposited in a glacio-lacustrine setting as deltas, in a 

basin constrained by higher topography to the west of the peninsula, and by the N3 moraine to 

the east (Figure 8a).  A series of small breaches were found incised through N3 and are likely to 

have been caused by a series of lake drainage events, resulting from filling to the level of the 

moraine crest and subsequent drainage of the lake.  The breaches have then been filled by small 

braided stream systems. 

 

4.3. Karrat Island 

4.3.1. Geomorphology 

Karrat is a 56 km2 island, close to the outer margin of Rink-Karrat Fjord (Figures 1 and 3).  It 

divides the fjord into two narrow channels, 3.4 km and 5 km wide respectively.  The island has a 

low relief, low elevation eastern end (<300 m a.s.l.), which rises steeply to a 950 m a.s.l. bedrock 

ridge in the centre (Figures 9a and b).  Ridge summits were covered by shattered bedrock, with 

a thin cover of autochthonous blockfield and partially shattered bedrock.  In some places on the 

summit, large (~9 m2) slabs of intact, in-situ bedrock were present (Figure 9b), though no striae 

were found.  The near vertical ridge walls showed some subtle abrasion and smoothing, 

suggesting erosion by warm-based ice cover.  The low elevation eastern end of Karrat was 

characterised by areally scoured terrain, with glacially smoothed bedrock and roches 

moutonnées, interspersed with small (100-300 m wide) shallow (3-5 m) lakes (Figure 9c).  A 

series of three inset ridges were found on the north and eastern sides of Karrat (Figure 10).  

They were formed of coarse (cobble to boulder), angular to sub-rounded, diamictic material.  



The ridges are interpreted as a series of inset lateral moraines (K1 – 49m, K2 – 137m, K3 – 210 

m a.s.l.) (Figures 9d, 9e, and 10).  K3 is the largest and most extensive of the moraines (4m in 

height, and 15m in width), (Figures 9d and 9e).  These are interpreted as the southern 

counterpart of the Nuugaatsiaq moraines, representing the lateral portions of a latero-frontal 

moraine system to the north of Karrat. 

 

Glacial bedforms are ubiquitous both inside and outside of the Karrat moraine complex.  These 

are dominated by roches moutonnées, with some whalebacks (7% of measured bedforms).  The 

majority of bedforms display unidirectional striae (108°-288°), however, a number show 

evidence for cross cutting ice flow (32°-212° (set 1), 77°-257° (set 2) and 108°-288° (set 3)), 

and multiple plucked faces (Figures 9f and 10).  Detailed analysis of the striae was not able to 

robustly constrain their age relationship.  However, on the interpretation of a progressive 

increase in topographic control on ice flow direction during deglaciation, their relative 

chronology is thought to be set 1 (oldest) to set 3 (youngest). 

 

4.3.2. Chronology of Karrat Island 

The highest elevation TCN sample was KA2 (724 m a.s.l. – see Figure 5, Table 2), taken from an 

in situ bedrock slab, returning ages of 11.7±1.2 10Be kyr (Table 3) and 13.5±2.2 26Al kyr (Table 

4).  The 10Be and 26Al age determinations are overlapping within error, suggesting a robust age 

for the sample, and the overriding by erosive ice at this altitude during the last glacial cycle. 

 

A series of samples were taken across the east of the island.  Sample KA9 (482 m a.s.l. – see 

Figure 6) returned a date of 12.1±1.2 10Be kyr (Table 3) and 11.6±1.0 26Al kyr (Table 4).  

Samples KA6, KA10, and KA11 also lie outside the moraines (Figure 6), and returned ages of 

11.9±0.8 10Be kyr, 7.2±0.6 10Be kyr/8.3±0.9 26Al kyr, and 9.1±0.9 10Be kyr/11.5±1.5 26Al kyr 

respectively (Tables 3 and 4).  These provide a maximum age for moraine formation.  Samples 

KA15, KA18, and KA19 are situated between moraines K3 and K2 (Figure 6), and returned 10Be 

ages of 2.2±1.3 kyr, 3.4±0.3 kyr, and 6.5±0.5 kyr respectively (Table 3).  Finally, sample KA17 

was taken from glacially abraded bedrock between moraines K2 and K1 (Figure 6), returning an 

age of 6.9±0.7 kyr (Table 3). 

 

The aforementioned samples KA15 and KA18 were not included in analysis of the results.  Their 

ages (2.2±1.3 kyr and 3.4±0.3 kyr respectively) appear anomalously young, and are 

incompatible with a large number of other dates from Karrat, and Rink Fjord (KA16, KA17, 

KA19, KA20, KA21, KA23, and KA27).  Both excluded samples were taken from sloping bedrock 

surfaces, with local spreads of morainic material.  The anomalously young ages of these samples 



in comparison to the rest of the dataset suggest that the locations have only become exhumed 

recently (Putkonen and Swanson, 2003).  Alternatively, if the two excluded samples are correct 

and represent exposure following a Neoglacial readvance at ~3.4 kyr, ice would have had to 

retreat to a position up-fjord of sample KA23, by ~5.2 kyr,  and then readvance without  causing 

further  subglacial erosion of samples KA23 and KA27, and without  destroying erratics KA17, 

KA19 and KA20).  Furthermore, sites of KA15 and KA18 would have to have been eroded and 

cosmogenically reset while KA20, KA27, KA17 and KA19 remained uneroded - this is scenario is 

implausible Also pertinent to this argument is the regional Neoglacial readvance limit, which, 

within West Greenland is widely acknowledged to be the Little Ice Age limit (Kelly, 1980, 

Funder et al., 2011).  In the case of Rink Isbrae this is only 4 km west of the present ice margin 

and some 35km from Karrat Island suggesting that samples KA 15 and KA 18 are anomalously 

young.      

 

Further constraint upon the deglacial chronology is provided by a 14C age from Karrat Lake, a 

small lake on the low-level surface on eastern Karrat clearly outside the K3 moraine (71.51° N 

52.95° W, Figures 9a and 10).  A 1 m sediment core was retrieved from the centre of the lake, 

containing two lithofacies; a minerogenic sandy clay (LF-K1) overlain by an organic lake gyttja 

(LF-K2) (Figure 11). In addition to the visual stratigraphy, the transition from LF-K1 to LF-K2 is 

marked by a rapid decrease in magnetic susceptibility and an increase in porosity.  This 

suggests a rapid transition from dense, minerogenic material (LF-K1) to a highly organic, 

porous material (LF-K2).  LF-K1 is interpreted as distal glacio-lacustrine sediment, dominated 

by glacially derived rock flour input, thus recording the last retreat of ice from the site.  A bulk 

gyttja sample was taken from 1 cm above the LF-K1 to LF-K2 transition for 14C dating (sample - 

KaL1), returning an age of 11196-11316 cal. kyr BP (2σ range) (Table 5).  This date represents a 

minimum age for deglaciation from this point, and is in agreement with the local TCN deglacial 

dates from this area (KA1, KA4, and KA6).suggesting there are no issues relating to age 

overestimation (Wolfe et al., 2004).   

 

 

4.4. Ingia Fjord 

4.4.1. Geomorphology 

Fjord walls along Ingia Fjord were glacially smoothed up to 800-1000 m a.s.l.  Above this, the 

terrain was mantled by extensive scree, autochonous blockfield, and weathered bedrock 

surfaces.  The boundary between these terrain types is marked by a faint trimline (Figure 12a).  

The majority of work in Ingia Fjord was carried out on a small (24 km2) peninsula, 15 km from 

the present ice margin.  The low elevation peninsula was characterised by low relief hilly 



topography, with ubiquitous roches moutonnées, whalebacks, and small lakes (Figure 12b).  

Bedform long axes were broadly concordant with striae directions and fjord topography, 

recording northeast to southwest ice flow (64°-244° see Figure 12b).  A large (10-30m high), 

discontinuous moraine ridge was mapped at 420-446 m a.s.l., close to the break in slope at the 

steep fjord wall (Figure 12a).  The ridge is composed of sub-angular to sub-rounded clasts from 

local lithologies, with some occasional erratic material.   In places it appears to have undergone 

some post-depositional rock glacierisation. 

 

4.4.2. Chronology of Ingia Fjord 

The surficial geology of this area is dominated by metagreywackes characterised by very thin 

bedding planes and high joint densities.  However, these were very low in suitable quartz, and 

potentially dateable surfaces were often highly fragmented and unsuitable for dating.  

Chronological control for deglaciation through Ingia Fjord is reliant upon a single 14C age from 

Ingia Lake (IL1), a 200 m2 lake at 262 m a.s.l. on the Ingia Fjord peninsula (71.86° W 53.03° W) 

(Figure 12a).  A 0.97 m sediment core was taken from the centre of the lake, displaying two 

lithofacies; an unconsolidated silty sand to clay (LF-I1), overlain by a partially laminated, highly 

organic lake gyttja with common detrital macroscopic plant remains (LF-I2) (Figure 11).  This 

sedimentological switch is accompanied by a rapid drop in magnetic susceptibility and increase 

in porosity at the boundary between LF-I1 and LF-I2.  As in Karrat Lake, LF-I1 is interpreted as a 

fining upwards glacio-lacustrine deposit, formed by sedimentation into a body of standing 

water, following local ice retreat.  A sample of macroscopic plant remains was taken for 14C 

dating from 1 cm above the contact between LF-I1 and LF-I2, yielding an age of 9.7-9.9 cal. yrs 

BP, thereby providing a minimum age for the deglaciation of Ingia Isbræ to this mid-fjord 

position. 

 

5. Discussion 

5.1. Configuration of the northern UISS during the last glacial cycle 

 

Both geomorphological mapping/data and surface exposure ages provide compelling evidence 

for erosive warm-based ice throughout the inner fjords of Rink-Karrat, Umiámáko, and Ingia 

Fjords during the last glacial cycle.  Ice thicknesses throughout the inner fjord region reached 

>1400 m a.s.l., but remained below 1968 m a.s.l., as constrained by KA5.  Some overtopping of 

fjord topography occurred between 1000 and 1400 m a.s.l., but high level plateaux between 

troughs (>2000 m a.s.l.) prevented the overwhelming of regional topography by unconfined, 

diffluent ice during the last glacial cycle.  These high level areas are presently covered by 

blockfields or small plateau icefields.  At the LGM they would have either remained exposed as 



nunataks, or become covered by cold-based ice as icefields expanded.  10Be/26Al isotope 

determinations from the only sample above 1500 m a.s.l. (KA5) suggest no inheritance, and 

therefore ice-free conditions throughout the last glaciation.  However, in order to fully 

understand ice coverage of high-altitude plateaux, a more rigorous programme of surface 

exposure sampling from these altitudes would be necessary.  Similar results are found from 

high altitude surfaces in southern Uummannaq (Roberts et al., 2013), with blockfield suggesting 

either ice free or cold-based ice cover during the last glacial cycle.  Concordance of 10Be and 26Al 

ages throughout samples below 1000 m a.s.l. suggests sufficient erosion of bedrock to prevent 

inheritance (Tables 3 and 4). 

 

Based upon geomorphological and surface exposure data, ice thicknesses in the vicinity of 

Karrat Island were at least 720 m a.s.l., though ice is thought to have submerged Karrat Island 

(900 m a.s.l.).  Ice from Rink and Umiámáko Isbræ would have become confluent to the east of 

Karrat Island, with Rink Isbræ forcing Umiámáko Isbræ over the centre and east of 

Qeqertarssuaq (as evidenced by striae – see section 4.2.1).  Once ice from Rink-Karrat Fjord 

reached the east of Qeqertat Imát, it became confluent with ice from Ingia Fjord.  Ocean floor 

bedforms provide evidence for highly convergent flow into the Uummannaq Trough, from the 

east and north (through Igdlorssuit Sund) (Ó Cofaigh et al., 2013b).  A shallow sill between 

northern Ubekendt Ejland and southern Svartenhuk (<200m below sea level) would have aided 

this, acting as a topographic barrier to ice moving west, and it has been hypothesised that ice 

was drawdown southwards through  Igdlorssuit Sund (Roberts et al., 2013).  Once coalescent, 

the southern UISS itself would have continued to drawdown ice from the northern UISS, further 

enhancing the southerly flow through Igdlorssuit Sund. 

 

Although ice thicknesses during the last glacial cycle were comparable between the north and 

south UISS, outlet glaciers in the northern UISS remained within their fjord confines during the 

last glacial cycle, separated by high elevation plateaux (>2000 m a.s.l.) that would have 

remained as ice free nunataks or, more likely, covered by cold-based ice caps.  In contrast, 

plateaux elevations in the southern UISS (north of Nuussuaq) are <1000 m a.s.l., and not of 

sufficient altitude to keep outlet glaciers within their fjord confines during the last glacial cycle.  

As a result of this extensive diffluent flow, Roberts et al. (2013) proposed a progressive 

westward migration of the southern UISS onset zone through the last glacial cycle.  This 

occurred as ice thicknesses increased and topographic controls within the inner fjord region 

became less influential on overall ice dynamics (Roberts et al., 2013).  As a result, larger-scale 

regional topography (e.g. Nuussuaq, Svartenhuk, and Ubekendt Ejland) would have become the 

principal topographic controls upon flow routing.  In contrast, the outlet glaciers in the northern 



UISS appear to have remained within the confines of the local fjord topography and, hence, 

predicting any degree of onset zone migration during the last glacial cycle is difficult.   

 

5.2. Deglaciation of the northern UISS; timing, retreat style, and controls 

In combination with geomorphological and chronological data from the offshore and southern 

sectors of the UISS (Ó Cofaigh et al., 2013b, Roberts et al., 2013), this work provides the first 

complete reconstruction of the UISS’ LGM geometry and the chronology of its subsequent 

deglaciation (Figure 13).  The palaeo-UISS contains all diagnostic components of an ice-stream 

in both contemporary, and palaeo settings (Stokes and Clark, 1999): individual outlet glacier 

tributaries; a convergent onset zone; streamlined bedforms; and a trunk zone which feeds into a 

large trough mouth fan at its terminus.  A time-distance path for the retreat of ice through Rink-

Karrat Fjord is presented in Figure 13c and this framework is used to explore the regional 

forcing mechanisms driving deglaciation (Figure 14).   

 

5.2.1. LGM limit to Ubekendt Ejland 

The LGM deglaciation of the UISS from the shelf-edge is discussed by Ó Cofaigh et al. (2013b), 

with retreat from the continental break underway by 14.9 cal. kyr BP.  Surface exposure dates 

from Ubekendt Ejland, record ice retreat and thinning to the south east of Ubekendt Ejland by 

12.4 kyr (Roberts et al., 2013).  A lateral moraine sequence between 670 and 125 m a.s.l.  on 

southern Ubekendt Ejland provides for top-down thinning and ice margin retreat occurring 

simultaneously (Roberts et al., 2013).  This retreat from the shelf edge (14.9 cal. kyr BP) is 

coincidental with the onset of Greenland Interstadial 1e (14.7-14.1 GICC05 b2k - Figure 14) 

(Lowe et al., 2008), a period of increasing insolation (Huybers, 2006), and rising sea-level in 

West Greenland (Figure 14) (Long et al., 1999, Simpson et al., 2009).  Reconstructions of ocean 

temperature on the Uummannaq shelf suggest that the warm West Greenland Current (WGC) 

only entered the Uummannaq Trough after 8 cal. kyr BP (McCarthy, 2011).  This initiation of the 

WGC onto the Uummannaq shelf is later than northwest Greenland and Baffin Bay (Levac et al., 

2001, Knudsen et al., 2008).  This maybe a partial result of excess meltwater flux from the GIS as 

it retreated from the outer  shelf (McCarthy, 2011).  This would have diluted and cooled the 

basal water mass, or diverted the warm WGC water offshore (McCarthy, 2011).  It is therefore 

unlikely that this stage of early deglaciation was triggered by the influx of warm water.  Once 

retreat was underway, increased water depths of >600 m through the Uummannaq Trough 

would have led to increased ice discharge, and rapid thinning and retreat (Schoof, 2007).  

Enhancement of retreat rates by deep subglacial troughs is common, and has been reported in 

other studies from continental fjord margins (e.g. Briner et al., 2009). 



 

Once the UISS reached the southern coast of Ubekendt Ejland, the lateral confinement within the 

trough increased and the bed shallowed (Figure 13b).  The topographic confinement is likely to 

have increased lateral resistive stresses, thickening the ice and increasing basal drag.  This 

would have reduced ice flux and caused temporary slowdown between Nuussuaq and Ubekendt 

Ejland.  While this is likely, the current chronology means that this hypothesis cannot be further 

tested at present. 

 

5.2.2. Ubekendt Ejland to the fjord margins  

Once ice retreated beyond south-eastern Ubekendt Ejland the north and south regions of the 

UISS separated, retreating north through Igdlorssuit Sund and east towards Uummannaq 

respectively.  The timing of retreat through Igdlorssuit Sund is constrained by ages of 12.4 kyr 

on southern Ubekendt Ejland (122–233 m a.s.l.) (Roberts et al., 2013) and 11.7 kyr on Karrat 

Island.  The ages are within 2σ errors, suggesting deglaciation could have been rapid, retreating 

~65 km in 0.7 kyr.  Though rapid, the lateral moraine staircase on western Qeqertarssuaq 

suggests a coupled top-down thinning and calving during this stage of deglaciation. 

 

This period of deglaciation (12.4-11.7 kyr) occurs during the latter part of Greenland Stadial 1 

(GS1 12.9 kyr to 11.7 kyr), and the early Holocene (Lowe et al., 2008) (Figure 14), and is 

characterised by an increase in air temperature (~4 ‰ δ18O increase in the GRIP and NGRIP 

record) and a regional peak in relative sea-level at ~12 kyr (Simpson et al., 2009).  In 

conjunction with the ice margin entering the deep (500 – 600 m b.s.l.) Igdlorssuit Sund (Figures 

1 and 13b and 13d), this would have acted to enhance rapid retreat back to the fjord margins.  

The timing of retreat from Ubekendt Ejland to the fjord margins is similar between the northern 

and southern sectors of the UISS, occurring by 11.5 – 10.8 kyr (Roberts et al., 2013). 

 

5.2.3. Outer fjord to present ice margin 

Following deglaciation through Igdlorssuit Sund the northern UISS progressively ‘unzipped’ as 

individual outlet glaciers retreated into their fjords.  Dates from Rink-Karrat fjord suggest rapid 

retreat and thinning of ice across Karrat Island, with the exposure of Karrat Lake by ~11.2 cal. 

kyr BP, during a period of increasing air temperature (Figure 14). Following retreat to the 

present outer Rink-Karrat Fjord margin, geochronological data suggest that the ice margin 

underwent a dramatic decrease in retreat rate and temporary stagnation on east Karrat 

between ~11.2 and 6.9 kyr (Figure 13c).  The chronological data are supported by moraines on 

Karrat and Nuugaatsiaq (moraines K1-3 (Figure 10) and N1-3 (Figure 8a)), providing 



geomorphological evidence that retreat through Karrat Fjord was punctuated by a still-stand or 

re-advance. 

 

Chronological results for moraine formation on Karrat constrain K3-N3 to 9.1 - 6.9 kyr.  Dates 

between K3 and K1 are within errors of one another (6.5±0.5 kyr and 6.9±0.5 kyr), and suggest 

deposition of the moraine system by ~6.9 kyr.  The similar, sub-parallel geomorphology and 

closely nested pattern of the moraines on Karrat Island suggest that they were not formed by a 

series of separate readvances.  No evidence for a readvance was noted in the field, such as a 

second period of minerogenic input within the lake sediment cores, and an absence of bulldozed 

sediment within, or between, the moraines.  As a result, the Karrat-Nuugaatsiaq moraine system 

is interpreted as forming during retreat across Karrat, punctuated by a marginal stabilisation.  

Similar latero-terminal moraines systems in other outer fjord localities have been identified 

throughout western Greenland, termed the ‘Fjord Stade moraines’ (Weidick, 1968, Tenbrink 

and Weidick, 1974, Funder, 1989, Long and Roberts, 2002, Briner et al., 2010, Young et al., 

2011a, 2013a).  These moraines are cited as forming as an ice sheet margin response to the GH-

9.3 and GH-8.2 climatic events (Long and Roberts, 2002, Young et al., 2011a, 2013a, Briner et al., 

2010).  However, despite their widespread correlation with these climatic events, it has also 

been acknowledged that moraine formation could also be a dynamic response to, or enhanced 

by, topography, as ice retreated onshore (Funder, 1989, Warren and Hulton, 1990, Long et al., 

2006).   

 

Other moraine systems from West Greenland include the Umivit-Keglen, and Ørkendalen 

moraines, dated to 8.4-7.4 cal. kyr BP and 7.0-6.4 cal. kyr BP respectively (recalibrated dates 

using Calib, and IntCal09 (Reimer et al., 2011)()) (Van Tatenhove and van der Meer, 1995, van 

Tatenhove et al., 1996). These moraines are also thought to relate to localised marginal re-

advance, induced by short periods of climatic deterioration (Tenbrink and Weidick, 1974).  

Within the Uummannaq region dates constrain the deposition of the Karrat-Nuugaatsiaq 

moraine system to between 9.1 and 6.9 kyr, therefore encompassing the period of Fjord Stade 

and Umivit-Keglen, /Ørkendalen moraine deposition (Long et al., 2006, Briner et al., 2010, 

Young et al., 2011a, Young et al., 2011b, Young et al., 2013a).  This makes direct correlation with 

any climatic events or other moraine systems problematic when based upon fjord position and 

chronology alone. 

 

The marginal still-stand observed in Rink-Karrat Fjord occurred from the onset of the  Early 

Holocene through to the  Holocene Thermal Maximum (HTM), a period from 11 to 5 kyr, 

characterised by a warm climate (Wanner, 2008, Jansen, 2007, Renssen et al., 2009, Kaufman et 



al., 2004), Within Greenland, the HTM was characterised by temperatures 2-3°C warmer than 

present, suppressed precipitation levels (Anderson and Leng, 2004, Bennike et al., 2010, Axford 

et al., 2013), a peak in summer insolation and a drop in sea-level (Figure 14) (Long et al., 1999, 

Simpson et al., 2009).  Though broadly constrained to 11-5 kyr, ocean-atmosphere-vegetation 

models have predicted that warming across central Greenland would have been greatest at 6-5 

kyr (Renssen et al., 2009), Palaeoecological data from the Kangerlussuaq (Anderson and Leng, 

2004, Bennike et al., 2010) and Jakobshavn (Axford et al., 2013) regions report periods of 

maximum warmth at 7.2-5.6 kyr and 6-4 kyr respectively.   

 

In order to constrain the precise timing of maximum Holocene warmth in the Uummannaq 

region a local palaeoenvironmental reconstruction would be required, however broad 

chronological agreement with other areas of West Greenland would be expected.  It therefore 

appears likely that the margin stagnation within Rink-Karrat Fjord was maintained through a 

period of warm climate, not conducive to ice margin stabilisation.  Thus, the still-stand is 

hypothesised to have been controlled by non-climatic factors.  Palaeo-ice stream channel width 

close to Karrat Island reduces to ~5 km, and bed topography shallows to ~400 m.  As deeper 

topography exists to the east (>1000 m) and west (~700 m) of Karrat Island, this makes the 

area a prominent bathymetric high (Figure 14). This is most pronounced directly offshore of the 

Karrat-Nuugaatsiaq moraines, where a narrow topographic high occurs, displaying steep up and 

downstream slopes.  The shallowing of the bed would have reduced the relative magnitude of 

ice flux necessary to maintain a stable grounding line (Jamieson et al., 2012, Schoof, 2007, 

Mercer, 1961). Additionally, the narrowing of the channel would have reduced the flux through 

increased lateral resistance (Mercer, 1961, Whillans and Van der Veen, 1997) and up-ice surface 

profile steepening (Jamieson et al., 2012).  These topographic effects would have been sufficient 

to reduce calving rates and subsequently retreat rates.  As a result, it appears likely that 

topographic constriction and shallowing facilitated the pinning of the ice margin during retreat.  

Such topographically controlled retreat dynamics have been reported elsewhere in Greenland 

(Warren and Hulton, 1990) and for Alaskan tidewater glaciers (O'Neel et al., 2005), and 

modelled for ice streams in Antarctica (Jamieson et al., 2012). 

 

After the still-stand on Karrat Island, ice retreat resumed at ~6.9 kyr, reaching the spur between 

Rink and Umiámáko Fjords by 6.5 kyr.  Here, Rink and Umiámáko Isbræ separated, their 

detachment evidenced by lateral moraines on the spur between the fjords (Figure 5).  Following 

this, retreat in Rink Fjord continued, reaching ~15 km from the present ice margin by 5 kyr.  

The factors forcing of this final retreat from Karrat Island to Rink Isbræ’s present margin (~6.9 

– 5.0 kyr) are unknown, but it is likely to have been the persistence of warm air temperatures 



and the influx of the warm WGC into the Uummannaq region (McCarthy, 2011).  The incursion 

of the WGC into the Uummannaq Trough is thought to have occurred by ~8.0 kyr; however the 

timing of its occurrence in Rink-Karrat Fjord (and therefore its impact upon the ice margin) is 

unknown.  The perturbation by the influx of warm water is likely to have been sufficient to 

detach the ice margin from its topographic pinning point at Karrat Island and force retreat into 

the over-deepened inner Rink Fjord and then to, or beyond, the present ice margin. 

 

Retreat chronology in Ingia Fjord’s is limited to a single date from south-east Svartenhuk, close 

to the fjord mouth (10.7cal. kyr BP - Bennike, 2000), and a date from Ingia peninsula (9.9 cal. 

kyr BP - this study).  As such, it is difficult to constrain retreat through Ingia Fjord in detail, 

other than that ice had retreated beyond a mid-fjord position by 9.9 cal. kyr BP. 

 

5.3. Implications for LGM ice stream history of the West Greenland Ice Sheet 

Results from the Greenlandic continental shelf have provided extensive evidence for the 

asynchronous onset of ice stream deglaciation throughout Greenland (Evans et al., 2009, Funder 

et al., 2011, Ó Cofaigh et al., 2013b).  This asynchronous behaviour continued through 

deglaciation, and is mirrored within individual outlet glaciers in the Uummannaq region.  As 

with other GIS ice streams, the retreat of the northern UISS from its shelf-edge terminus to its 

present margin was driven by climatic, oceanic, and topographic forcings.  Once within the inner 

fjord, the retreat behaviour was, however, strongly affected by channel topography and both 

bed depth and fjord width were the dominant control upon the rate of deglaciation.  Similarly, a 

strong topographic control upon ice stream retreat is reported from the inner fjords of the 

southern UISS.  Here, an ice margin stabilisation occurred in a similar topographically 

constricted inner fjord position as on Karrat Island.  However, TCN dates from the southern 

UISS constrain the marginal pinning to between 11.4-9.3 kyr, again in a location characterised 

by channel narrowing and a shallowing in bed depth (Roberts et al., 2013).  This provides 

further evidence for the importance of topography on glacier retreat, and exemplifies the 

strongly asynchronous response of outlet glaciers within the onset zone of a single ice stream 

system. 

 

Also critical within the context of GIS deglacial history is the behaviour of the Karrat-Rink outlet 

system through the HTM to Neoglacial transition.  During the early Holocene, a number of 

studies have demonstrated that ice was experiencing continued rapid retreat from its LGM 

margin (Corbett et al., 2011, Larsen et al., 2011, Hughes et al., 2012, Larsen et al.).  The HTM was 

characterised by high air temperatures and extensive moisture starvation across the GIS.  



Research has shown that this peak in air temperatures was accompanied by the widespread 

retreat of the GIS to an position behind its present margin between ~ 9 -7 kyr (Weidick et al., 

1990, Weidick and Bennike, 2007, Roberts et al., 2010, Briner et al., 2010, Young et al., 2011b).  

Though broadly unknown, some have speculated that this position for Jakobshavn Isbræ was 

>10 km inland of the present margin (Weidick et al., 1990; Briner et al., 2010).  Store Gletscher, 

the main outlet glacier of the southern UISS, reached its present margin by 8.7 kyr (Roberts et 

al., 2013), Jakobshavn Isbræ by 7 kyr (Long and Roberts, 2003, Young et al., 2011b), and in 

central West Greenland the Umivit-Keglen and Ørkendalen moraines  suggest ice had  retreated 

to (or beyond) its present margin occurred by 7.8 – 6.8 cal. kyr BP (Kelly, 1985).  Thus, the 

hypothesised retreat of Rink Isbræ to a position at or beyond its present margin only after 5 kyr 

is much later than the deglaciation of most other ice streams in West Greenland.  The Rink Isbræ 

margin was able to remain in a mid-fjord position throughout the HTM, displaying only a 

moderate retreat in response to air temperature increase.  Furthermore, retreat to the present 

ice margin after 5.0 kyr appears to have occurred during the onset of the cold Neoglacial period 

(~4 kyr). This is atypical of most Greenland marine outlet glaciers/ice streams and clearly 

demonstrates that despite a return to a positive mass balance regime during the Neoglacial the 

behaviour of individual catchments and outlet systems was heavily influenced by local 

topographic controls on ice marginal dynamics. 

 

6. Conclusion 

 

The UISS existed as a large cross-shelf ice stream formed from multiple, confluent, outlet 

glaciers that terminated at the shelf-edge during the LGM.  During the last glacial cycle, outlet 

glaciers in the northern Uummannaq region advanced through their fjord confines and 

coalesced.  Geomorphological and geochronological data provide evidence for warm-based ice 

between 1400 and 1900 m a.s.l. in the northern UISS during the last glacial cycle.  These ice 

thicknesses are comparable to those in the southern UISS.  High altitude terrain in the north of 

the region forced ice to remain topographically confined within fjords, with intervening high-

level areas remaining ice free, or becoming covered by cold-based ice fields.  Once coalescent, 

ice was forced south, to the east of Ubekendt Ejland.  Here it became confluent with ice from the 

southern UISS, draining west to the continental shelf edge.  Deglaciation following the LGM took 

place in three stages: (1) Deglaciation from the shelf was underway by 14.9 cal. kyr BP, reaching 

the southeast of Ubekendt Ejland by ~12.4 kyr BP; (2) Retreat through the confluence zone was 

accompanied by progressive separation of the individual outlet glaciers.  Retreat was rapid, and 

enhanced by fjord bathymetry, with ice reaching the northern outer fjords by 11.6 kyr; (3) 



Retreat through the present fjord system was interrupted by a period of topographically-

controlled ice marginal stabilisation between ~9.1 and 6.9 kyr. 

 

The first two stages of retreat were synchronous between the north and south of the UISS.  This 

retreat was controlled by climatic and oceanographic forcings, enhanced by bathymetric depths.  

Once within fjord confines, topographic constrictions became the dominant control upon 

individual outlet glacier dynamics, overriding climatic forcings, and causing early- to mid-

Holocene ice marginal stabilisation in Rink-Karrat Fjord.  A similar topographically controlled 

stabilisation occurred in the southern UISS; with a shorter duration still stand (11-9.3 kyr).  

Topographic control forced the northern UISS to remain on Karrat Island until 6.9 kyr, during 

the onset of the Holocene Thermal Maximum.  Following this, Rink Isbræ retreated to a position 

at or beyond its present margin after 5.0 kyr.  The ice within Rink-Karrat Fjord appears to have 

responded asynchronously with other West Greenland ice streams.  Additionally, ice retreat was 

clearly not responding in phase with the warm HTM and cooler Neoglacial.  This ice stream 

therefore displays a unique dynamic signal within Greenland and provides compelling evidence 

for a first order topographical control on ice margin stabilisation in West Greenland.  It also has 

major implications for our understanding and reconstructions of Mid-Holocene ice sheet extent 

and Greenland Ice Sheet dynamics during the Neoglacial. 
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Table 1.  Fjord locations, characteristics and outlet glacier ice flux throughout the Uummannaq 

region.  Outlet glacier locations are identified in Figure 1 

Fjord Name 
Mouth 

location 
Snout 

location 
Orient 

(°) 
Length 
(km) 

Width 
at SL 
(km) 

Plateau 
height (m 

a.s.l) 

Max. water 
depth (m)a 

Max ice flux 
(km3 yr-1)b 

Northern Fjords 
        

Ingia Fjord 
71.73°N 
53.32°W 

72.00°N 
52.70°W 

213.4 38.5 4.5 1444 - 1.1 

Rink-Karrat 
Fjord 

71.40°N 
53.07°W 

71.73°N 
53.65°W 

238.1 63.6 6.2 1791 1108 11.8 

Kangerdlugssuaq 
71.38°N 
53.00°W 

71.45°N 
51.83°W 

263.2 61.7 4.2 1894 570 2.4 

Southern Fjords 
        

Kangerdluarssuk 
71.13°N 
52.30°W 

71.25°N 
51.52°W 

245 34.9 5.7 1671 770 0.3 

Perdlerjiup 
Kangerdlua 

71.05°N 
52.00°W 

70.98°N 
50.95°W 

282 42.5 5.5 1388 1246 1 

Itivdliarssup 
Kangerdlua 

70.98°N 
51.97°W 

70.80°N 
51.00°W 

302.1 42.5 5.6 1332 844 7.6 

Sermigdlip 
Kangerdlua 

70.7°N 
51.52°W 

70.62°N 
50.63°W 

291.5 38.2 4.4 1180 1287 2.6 

Qarajaqs Isfjord 
70.68°N 
52.28°W 

70.37°N 
50.60°W 

302.7 75.4 6.9 1308 956 17.8 

aData from GEBCO_08 Grid and Hareø-Prøven bathymetric charts 
bData from (Bauer et al., 1968; Carbonnell and Bauer, 1968; Rignot and Kanagaratnam, 2006b) 

 

Table 2. TCN sample locations, elevations, type and shielding factors for samples presented in 

this study. 

Sample 
code 

Latitude 
(°N) 

Longitude 
(°W) 

Elevation 
(m a.s.l.) 

Sample 
type 

Thickness 
(cm)a 

Sample density 
(g/cm3) 

Shielding 
factor 

KA2 71.483 53.126 720 Bedrock 5 2.6 0.9949 

KA3 71.654 51.999 1402 Bedrock 5 2.6 0.9951 

KA5 71.671 52.391 1964 Bedrock 5 2.6 1 

KA6 71.518 52.943 276 Erratic 5 2.6 0.9995 

KA9 71.510 53.0279 482 Bedrock 5 2.6 0.9794 

KA10 71.513 53.0278 380 Bedrock 5 2.6 0.9886 

KA11 71.516 53.0276 286 Bedrock 5 2.6 0.9889 

KA12 71.521 52.993 160 Bedrock 5 2.6 0.99018 

KA15 71.525 52.968 76 Bedrock 5 2.6 0.9910 

KA16 71.529 52.880 78 Bedrock 5 2.6 0.9967 

KA17 71.529 52.880 69 Erratic 5 2.6 0.9977 

KA18 71.527 52.901 148 Bedrock 5 2.6 0.9989 

KA19 71.527 52.906 148 Erratic 5 2.6 0.9986 

KA20 71.629 52.136 400 Erratic 5 2.6 0.9699 

KA21 71.630 52.137 411 Bedrock 5 2.6 0.9411 

KA23 71.633 52.082 110 Bedrock 5 2.6 0.9604 

KA24 71.621 52.940 1019 Bedrock 5 2.6 0.9998 

KA27 71.641 52.564 162 Bedrock 5 2.6 0.9934 
a The top faces of all samples were exposed at the surface. 

 



Table 3.  10Be TCN exposure ages from the northern UISS 

Sample 
code 

10Be conc. 
(at g-1)abc 

Muon prod. 
rate 

(at gr-1 yr-1) 

Spallation 
prod. rate 
(at g-1 yr-1) 

10Be Exposure 
age (yrs)d,e,f 

Internal 
uncertainty 

(yr) 

External 
uncertainty 

(yr) 

KA2 
97476 ± 
5258 

0.236 8.09 11686 632 1198 

KA3 
284023 ± 
13055 

0.298 14.71 18932 874 1869 

KA5 
2119500 ± 
72370 

0.359 23.1 92027 3216 8789 

KA6 
65286 ± 
2738 

0.201 5.28 11939 502 763 

KA9 
79977 ± 
3403 

0.217 6.36 12146 518 1178 

KA10 
43476 ± 
2895 

0.209 5.81 7241 483 596  

KA11 
49532 ± 
4240 

0.202 5.28 9055 777 891 

KA15 
9606 ± 
5663 

0.187 4.23 2177 1284 1288 

KA17 
30340 ± 
1485 

0.187 4.22 6862 336 685 

KA18 
16276 ± 
1287 

0.192 4.61 3375 267 397 

KA19 
31312 ± 
1805 

0.192 4.61 6529 377 491 

KA20 
31451 ± 
4156 

0.210 5.84 5208 689 733 

KA21 
31207 ± 
2191 

0.211 5.7 5283 371 450 

KA23 
22171 ± 
2271 

0.189 4.26 4993 512 566 

KA27 
32099 ± 
5073 

0.193 4.66 6624 1049 1096 

a All beryllium-10 derived from quartz 
b Uncertainties are reported at the 1σ confidence level. 
c Propagated uncertainties include error in the blank, carrier mass (1 per cent) and counting statistics. 
d Calculation of ages was carried out assuming no erosion 
e Exposure ages are based upon the constant production rate model, using the scaling scheme for 

spallation from Lal (1991) and Stone (2000), and the NENA calibration (Balco et al., 2009). 
f Dates were calculated using the CRONUS-Earth online calculator, version 2.2 (Balco et al., 2008). 
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Table 4.  26Al TCN exposure ages from the northern UISS 

Sample 
code 

26Al (at g-

1)a,b,c 

Muon prodn 
rate 

(at gr-1 yr-1) 

Spalln 
prodn rate 
(at g-1 yr-1) 

26Al Exposure 
age (yrs)d,e,f 

Internal 
uncertainty 

(yr) 

External 
uncertainty 

(yr) 

26Al/10Be 
ratios 

KA2  
764049   
± 125967 

1.971 54.6 13536 2247 2350 
7.84±1.45 

KA3 
2272889 
± 91694 

2.496 99.23 22491 917 1433 
8.00±0.69 

KA5 
14630123 
± 428055 

3.008 155.85 96084 2948 5693 
6.90±0.53 

KA9 
513851   
± 37179 

1.81 42.9 11507 837 1009 
6.42±0.70 

KA10 
338083   
± 34256 

1.745 39.17 8297 844 934 
7.78 ± 
0.94 

KA11 
425895   
± 52326 

1.686 35.63 11479 1418 1523 
8.60 ± 
1.29 

a Al aluminium-26 derived from quartz 
b Uncertainties are reported at the 1σ confidence level. 
c Propagated uncertainties include error in the blank, carrier mass (1 per cent) and counting statistics. 
d Calculation of ages was carried out assuming no erosion 
e Exposure ages are based upon the constant production rate model, using the scaling scheme for 

spallation from Lal (1991) and Stone (2000), and the NEMA calibration (Balco et al., 2009). 
f Dates were calculated using the CRONUS-Earth online calculator, version 2.2 (Balco et al., 2008). 
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Table 5. 14C ages and calibrated age ranges for the two lake sites in this study.  14C age is the radiocarbon age corrected for isotopic fractionation, 

measured and calculated using δ13C.  Errors are quoted to 1σ.  Ages were calibrated using OxCal 4.2 and the IntCal09 calibration curve, and 

presented as a range to 2σ. 

Pub. 
code 

Sample 
code 

Lat. 
(°N) 

Long
(°W) 

Sample 
type 

δ13CVPDB‰           
± 0.1 

Carbon 
content 

(% by wt.) 

14C 
Age 

Uncertainty 
1σ (14C yrs 

BP) 

cal. Min 
(yr) 

cal. Max 
(yr) 

cal. mid 
(yr) 

SUERC-
37526 

InL1 71.86 53.03 
Plant 

macros 
-27.9 27.5 8811 40 9685 9954 9819.5 

SUERC-
37530 

KaL1 71.51 52.95 
Bulk 
lake 

gyttja 
-19.8 4.5 9838 41 11196 11316 11256 

 

  



 

 Figure 1. Topographic and bathymetric overview of the Uummannaq region, with key locations 
marked. Note the higher average altitude of land masses in the north of the region, and the 
shallow Qeqertat Imát north of Ubekendt Ejland, in comparison to the deep Uummannaq 
Trough. Bathymetric depths are from IBCAO data (Jakobsson et al., 2012).  
  



 

Figure 2. Map of the Uummannaq region showing dominant bedrock geology (adapted from 

Steenfelt et al., 1998. The three distinct geological regions (A, B, and C) can be seen, separated by 

north to south trending faults (adapted from Steenfelt et al., 1998).  

  



 

Figure 3. Aerial photograph of the study area in the northern Uummannaq region. The focus of 
this study was Rink – Karrat Fjord and Ingia Fjord, in the south and north of this image 
respectively. Boxes indicate the locations of other figures. Fjord depths are shown by blue filled 
circles (from Hareø-Prøven bathymetric charts).  
  



 

Figure 4. Plate of photographs from inner Rink-Karrat Fjord. (a) Aerial photograph 
showing an overview of inner Rink Fjord, with striae shown (n=50 per rose diagram) 
(b) Fragmentary lateral moraine at 740 m a.s.l. in inner Rink Fjord (arrowed); (c) 
Striated, ice moulded roche moutonnee with lateral p-form arrowed; (d) Moraines Um1-
3 and R3 (all arrowed) at the Rink- Umiámáko confluence (see Figure 5 for moraine 
location); (e) Autochonous blockfield at 1400 m a.s.l. in inner Rink Fjord. (f) 
Autochonous blockfield at 1900 m a.s.l. on Pyramid Stubben.  



  

Figure 5. Aerial photograph of the spur between Rink and Umiámáko Isbræs (see Figure 4a for 

location). Two discrete sets of moraines were mapped in the field, with on corresponding to ice 

activity in Rink Fjord (R1-R3), and one to ice in Umiámáko Fjord (Um1-3).  

  



Figure 6. Aerial photographs showing the locations of samples taken for dating throughout 
Rink and Karrat Fjord, and their results. Successful TCN results are shown by green circles (10Be 
ages in black, 26Al ages in red). Bedrock samples have a black box, erratic boulder samples have 
a green box. 14C result is indicated by the blue circle.  
  



 
Figure 7. Plate of photographs from Qeqertarssuaq. (a) ice-moulded bedrock outcrops at 1040 
m a.s.l. on eastern Qeqertarssuaq, (b) enlargement of the striated, ice moulded bedrock surface 
from the bedrock outcrop beside the seated person in Figure 7a, (c) frost shattered and heaved 
local material at ~1000 m a.s.l., eastern Qeqertarssuaq, (d) large lateral moraine (Q1– 786 m 
a.s.l.) on western Qeqertarssuaq, abutting a bedrock cut lateral meltwater channel. See person 
on moraine ridge for scale. (e) Aerial photograph of western Qeqertarssuaq, with the meltwater 
channel of Figure 7d labelled, and the area of lateral moraines boxed, with individual ridges 
arrowed. (f) Oblique photograph from close to the meltwater channel, looking southwest. 
Lateral moraines are arrowed.  
  



Figure 8. (a) Aerial photograph (from KMS) of the Nuugaatsiaq peninsula and fjord wall to the 
northeast. Striae data from 1040 m a.s.l are shown at the top right, and the high-altitude lateral 
push moraine is shown by black arrows. Fragments from each of the four inset lateral moraines 
(N1-4) are arrowed, and striae shown in a rose diagram (n=50). The hypothesised extent of lake 
sediment on the peninsula (based upon sediment distribution) is also outlined; (b) Photograph 
looking northeast of the continuation of the Nuugaatsiaq lateral moraine sequence (arrowed). 
The moraines are patchy, but can be traced for >5km. 
  



 
Figure 9. Plate of photographs from Karrat Island: (a) Aerial photograph of Karrat Island, 
showing the locations of Figures 10b-f. (b) In situ bedrock slab at 750 m a.s.l.; (c) Glacially 
polished roches moutonnées which are found ubiquitously across the east of the island at 200 m 
a.s.l.; (d and e) Views of K3, the outermost of the three moraines mapped on Karrat (210 m 
a.s.l); (f) Bi-directional striae from eastern Karrat (~255 m a.s.l.).  



 

Figure 10. Aerial photograph of eastern Karrat, with Karrat moraines arrowed (K1-3). Superimposed 

rose diagrams show striae directions for a variety of locations across the island (n=50 for each 

location).  

 
Figure 11. Photograph and sediment log of lake sediment cores from Karrat and Ingia Lake. 

Sedimentology is show diagrammatically, as is the location of basal 14C dates taken. Note that the 

date from Karrat Lake is a bulk sample from lake gyttja, and the date from Ingia Lake is from a plant 

macrofossil. Magnetic susceptibility and porosity measurements are shown to the right of each core 

(measured using a Geotek Multi Sensor Core Logger). 



Figure 12. (a) Aerial photograph of Ingia Fjord (see Figure 4.3 for location). Black arrows mark 
the trimlines separated abraded surfaces from weathered, debris-rich surfaces above, red 
arrows indicate the fragmentary, partially rock glacierised lateral moraine. (b) Enlargement of 
the southwest portion of the peninsula, showing the ubiquitous glacially eroded whaleback and 
roches moutonnées. Average bedform long axes are shown by the white arrow, and striae are 
shown in a rose diagram (n=30). (c) Photograph of the landscape on the peninsula in Ingia 
Fjord. Photograph is taken looking west; south of the large lake visible in Figure 13b. Areally 
scoured terrain with large bedforms is visible in the fore- and mid-ground (ice-flow from right 
to left). Steep rock faces with gullies and associated talus cones are visible in the background. 
For scale, the bedform face to the right of picture is ~2 m high. 
  



 
 
Figure 13. Sample locations, bathymetric profile, channel width, and dates from the northern 
UISS: (a) location of transects used in b and d, through the north and south of the Uummannaq 
region. Tick marks along each transect represent 50 km. Sample numbers are indicate to show 
location of samples in Figure 13c and e; (b) bathymetric profile through Uummannaq Trough, 
Igdlorssuit Sund, and Rink-Karrat Fjord using GEBCO and swath-bathymetry data (black line), 
and average channel width from the outer fjord to present margin (red line – measured 
manually); (c) Bayesian constrained age model of deglaciation through the northern 
Uummannaq region. Ages are from: 1Ó Cofaigh et al., 2013b, 2Roberts et al., 2013, and this study; 
(d) bathymetric profile through Uummannaq Trough, Igdlorssuit Sund, and the southern 
Uummannaq region using GEBCO and swath-bathymetry data (black line), and average channel 
width from the outer fjord to present margin (red line – measured manually); (e) Bayesian 
constrained age model of deglaciation through the southern Uummannaq region. Ages are from: 
1Ó Cofaigh et al., 2013b, 2Roberts et al., 2013, and this study. 



 
 
Figure 14. NGRIP (blue) and GRIP (red) δ18O record for the past 17 kyr (Lowe et al., 2008), 
relative sea-level curve from Arveprinsens Ejland (Long et al., 1999, Simpson et al., 2009), and 
JJA radiation for 70°N. Annotations below the figure show key events throughout the 
deglaciation of the north and south UISS. Labels refer to Greenland Stadial 1 (GS-1), Greenland 
Interstadial 1 (GI-1), and Greenland Stadial 2a (GS-2a) (Lowe et al., 2008).  


