197 research outputs found

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Control of Tissue Growth and Cell Transformation by the Salvador/Warts/Hippo Pathway

    Get PDF
    The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini. We found that these regions were not required for Yorkie's ability to drive tissue growth in vivo, or YAP's ability to promote anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required for YAP's ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory proteins either via its WW domains or its transactivation domain

    YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation

    Get PDF
    Tissue development and organ growth require constant remodeling of cell-cell contacts formed between epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether YAP1 plays a specific role outside of the nucleus is currently unknown.The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues, thereby modifying its ubiquitin-ligase activity.Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of tight junctions

    Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling

    Get PDF
    Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects

    PP1A-Mediated Dephosphorylation Positively Regulates YAP2 Activity

    Get PDF
    Background: The Hippo/MST1 signaling pathway plays an important role in the regulation of cell proliferation and apoptosis. As a major downstream target of the Hippo/MST1 pathway, YAP2 (Yes-associated protein 2) functions as a transcriptional cofactor that has been implicated in many biological processes, including organ size control and cancer development. MST1/Lats kinase inhibits YAP2’s nuclear accumulation and transcriptional activity through inducing the phosphorylation at serine 127 and the sequential association with 14-3-3 proteins. However, the dephosphorylation of YAP2 is not fully appreciated. Methodology/Principal Findings: In the present study, we demonstrate that PP1A (catalytic subunit of protein phosphatase-1) interacts with and dephosphorylates YAP2 in vitro and in vivo, and PP1A-mediated dephosphorylation induces the nuclear accumulation and transcriptional activation of YAP2. Inhibition of PP1 by okadiac acid (OA) increases the phosphorylation at serine 127 and cytoplasmic translocation of YAP2 proteins, thereby mitigating its transcription activity. PP1A expression enhances YAP2’s pro-survival capability and YAP2 knockdown sensitizes ovarian cancer cells to cisplatin treatment. Conclusions/Significance: Our findings define a novel molecular mechanism that YAP2 is positively regulated by PP1mediate

    WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ

    Get PDF
    The transcriptional co-activators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. YAP and TAZ both possess WW domains, which are important protein–protein interaction modules that mediate interaction with proline-rich motifs, most commonly PPXY. The WW domains of YAP have complex regulatory roles as exemplified by recent reports showing that they can positively or negatively influence YAP activity in a cell and context-specific manner. In this study, we show that the WW domain of TAZ is important for it to transform both MCF10A and NIH3T3 cells and to activate transcription of ITGB2 but not CTGF, as introducing point mutations into the WW domain of TAZ (WWm) abolished its transforming and transcription-promoting ability. Using a proteomic approach, we discovered potential regulatory proteins that interact with TAZ WW domain and identified Wbp2. The interaction of Wbp2 with TAZ is dependent on the WW domain of TAZ and the PPXY-containing C-terminal region of Wbp2. Knockdown of endogenous Wbp2 suppresses, whereas overexpression of Wbp2 enhances, TAZ-driven transformation. Forced interaction of WWm with Wbp2 by direct C-terminal fusion of full-length Wbp2 or its TAZ-interacting C-terminal domain restored the transforming and transcription-promoting ability of TAZ. These results suggest that the WW domain-mediated interaction with Wbp2 promotes the transforming ability of TAZ

    Down-Regulation of Yes Associated Protein 1 Expression Reduces Cell Proliferation and Clonogenicity of Pancreatic Cancer Cells

    Get PDF
    BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1) is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed) test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells
    corecore