46 research outputs found

    Allogén vérképzőőssejt-átültetés Magyarországon

    Get PDF
    INTRODUCTION AND AIM: The publication summarizes the 2548 stem cell transplantations performed in the period of 1993-2015 in Szent Laszlo Hospital, Budapest and provides a detailed discussion of the 425 allogeneic transplantations during 2007-2013. METHOD: The analysis explains the major steps of the evolution of allogeneic stem cell transplantation and compares the results of the unique Hungarian allogeneic center. RESULTS: The significant shift in the transplantation indications from chronic myeloid leukemia to myelodysplastic syndromes and the rising age of the recipients are in line with world wide tendencies. The latter one is the consequence of the introduction and improvement of the concept of reduced intensity conditioning regimens, originally arising from the idea of Endre Kelemen. The most limiting factor, the donor availability seems to be resolved with the use of a new immunomodulating regimen, the application of posttransplantation cyclophosphamide, which allows the transplantation through HLA barriers with haploidentical family donors with comparable results to the HLA matched volunteer unrelated donors. The above mentioned tendencies result the wider use of allogeneic stem cell transplantation less dependent from recipient age, comorbidities and even donor availability. CONCLUSIONS: The publication highlights the need of expanding the stem cell transplantation budget and the involvement of new centers in Hungary in allogeneic of stem cell transplantation. Orv. Hetil., 2017, 158(8), 291-297

    MRE11 as a predictive biomarker of outcome following radiotherapy in bladder cancer

    Get PDF
    Purpose Organ-confined muscle-invasive bladder cancer (MIBC) is treated with cystectomy or bladder preservation techniques, including radiotherapy. There are currently no biomarkers to inform management decisions and aid patient choice. Previously we showed high levels of MRE11 protein, assessed by immunohistochemistry (IHC), predicted outcome following radiotherapy but not cystectomy. Therefore, we sought to develop the MRE11 IHC assay for clinical use and define its relationship to clinical outcome in samples from two major clinical trials. Methods and Materials Samples from the BCON and BC2001 randomised controlled trials and a cystectomy cohort were stained using automated IHC methods and scored for MRE11 in three UK centres. Results Despite step-wise creation of scoring cards and standard operating procedures for staining and interpretation, there was poor inter-centre scoring agreement (Kappa 0.32, 95% CI 0.17-0.47). There were no significant associations between MRE11 scores and cause-specific survival (CSS) identified in BCON (n=132) and BC2001 (n=221) samples. Re-optimised staining improved agreement between scores from BCON tissue microarrays (n=116), but MRE11 expression was not prognostic for CSS. Conclusions Manual IHC scoring of MRE11 was not validated as a reproducible biomarker of radiation-based bladder preservation success. There is a need for automated quantitative methods and/or a reassessment of how DNA-damage response relates to clinical outcomes

    Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data.

    Get PDF
    A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.We acknowledge support from Cancer Research UK (C5047/A22530, C309/A11566, C368/A6743, A368/A7990, C14303/A17197) and the Dallaglio Foundation. We also acknowledge support from the National Institute of Health Research (NIHR) (The Biomedical Research Centre at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust and the project "Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT)" [G0500966/75466]). We thank the Wellcome Trust, Bob Champion Cancer Trust, The Orchid Cancer appeal, The RoseTrees Trust, The North West Cancer Research Fund, Big C, The King family, and The Masonic Charitable Foundation for funding. This research is supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001202), the UK Medical Research Council (FC001202), and the Wellcome Trust (FC001202). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Mutational signatures of ionizing radiation in second malignancies

    Get PDF
    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential.This work was supported by funding from the Wellcome Trust (grant reference 077012/Z/05/Z), Skeletal Cancer Action Trust, Rosetrees Trust UK, Bone Cancer Research Trust, the RNOH NHS Trust, the National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Hazards and Threats at Newcastle University in partnership with Public Health England. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. Tissue was obtained from the RNOH Musculoskeletal Research Programme and Biobank, co-ordinated by Mrs Deidre Brooking and Mrs Ru Grinnell, Biobank staff, RNOH. Support was provided to AMF by the National Institute for Health Research, UCLH Biomedical Research Centre, and the CRUK UCL Experimental Cancer Centre. S.N.Z. and S.B. are personally funded through Wellcome Trust Intermediate Clinical Research Fellowships, P.J.C. through a Wellcome Trust Senior Clinical Research Fellowship
    corecore