Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets.

David C. Wedge^{1,2,34*}, Gunes Gundem^{2,3,34}, Thomas Mitchell²,^{4,5,34}, Dan J. Woodcock¹, Inigo Martincorena², Mohammed Ghori², Jorge Zamora², Adam Butler², Hayley Whitaker⁶, Zsofia Kote-Jarai⁷, Ludmil B. Alexandrov², Peter Van Loo^{2,8}, Charlie E. Massie⁵, Stefan Dentro^{2,8}, Anne Y. Warren⁹, Clare Verrill¹⁰, Dan M. Berney¹¹, Nening Dennis¹², Sue Merson⁷, Steve Hawkins⁵, William Howat⁹, Yong-Jie Yu¹¹, Adam Lambert¹³, Jonathan Kay⁶, Barbara Kremeyer², Katalin Karaszi¹³, Hayley Luxton⁶, Niedzica Camacho^{7,3}, Luke Marsden¹³, Sandra Edwards⁷, Lucy Matthews¹³, Valeria Bo¹⁴, Daniel Leongamornlert⁷, Stuart McLaren², Anthony Ng¹⁵, Yongwei Yu¹⁶, Hongwei Zhang¹⁶, Tokhir Dadaev⁷, Sarah Thomas¹², Douglas F. Easton^{17,33}, Mahbubl Ahmed⁷, Elizabeth Bancroft^{7,12}, Cyril Fisher¹², Naomi Livni¹², David Nicol¹², Simon Tavaré¹⁴, Pelvender Gill¹³, Christopher Greenman¹⁸, Vincent Khoo¹², Nicholas Van As¹², Pardeep Kumar¹², Christopher Ogden¹², Declan Cahill¹², Alan Thompson¹², Erik Mayer¹², Edward Rowe¹², Tim Dudderidge¹², Vincent Gnanapragasam^{4,19}, Nimish C. Shah⁴, Keiran Raine², David Jones², Andrew Menzies², Lucy Stebbings², Jon Teague², Steven Hazell¹², CAMCAP study group, Johann de Bono⁷, Gerthardt Attard⁷, William Isaacs²⁰, Tapio Visakorpi²¹, Michael Fraser²², Paul C Boutros^{23,24,25}, Robert G Bristow^{22,24,26}, Paul Workman⁷, Chris Sander²⁷, The TCGA consortium²⁸, Freddie C. Hamdy¹³, Andrew Futreal², Ultan McDermott², Bissan Al-Lazikani^{7,35}, Andrew G. Lynch^{14,33,35}, G. Steven Bova^{21,20,33,35}, Christopher S. Foster^{29,30,33,35}, Daniel S. Brewer^{7,18,31,33,35}, David Neal^{5,19,33,35}, Colin S. Cooper^{7,18,33,35}, and Rosalind A. Eeles^{7,12,33,35*}

¹ Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK

² Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK

³Memorial Sloan-Kettering Cancer Center, NY 10065, New York, USA

⁴Department of Urology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK

⁵Uro-Oncology Research Group, Cancer Research UK, Cambridge Institute, Cambridge, CB2 0RE, UK

⁶Molecular Diagnostics and Therapeutics Group, University College London WC1E 6BT ⁷The Institute Of Cancer Research, London, SW7 3RP, UK

⁸Cancer Genomics, The Francis Crick Institute, London, NW1 1AT, UK

⁹Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK

¹⁰Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, OX3 9DU,

UK

¹¹Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of

Medicine and Dentistry, Queen Mary University of London, London, E1 2AD, UK

¹²Royal Marsden NHS Foundation Trust, London and Sutton, SM2 5PT, UK

¹³The University of Oxford, Oxford, OX1 2JD, UK

¹⁴Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge

Institute, Cambridge, CB2 0RE, UK

¹⁵The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China

¹⁶Second Military Medical University, Shanghai, China 20043

¹⁷Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK

¹⁸Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK

¹⁹Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK

²⁰Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

²¹Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, FI-33520, Finland
²²Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9

²³Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 0A3

²⁴Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7

²⁵Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada M5S 1A8

²⁶ Department of Radiation Oncology, University of Toronto, Toronto, Canada

²⁷cBio Center, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA

02215, USA

²⁸The TCGA consortium, National Cancer Institute @ NIH, Bethesda, MD20892, USA

²⁹University of Liverpool, Liverpool, UK

³⁰HCA Laboratories, London, WC1E 6JA, UK

³¹Earlham Institute, Norwich, NR4 7UH

³²School of Mathematics and Statistics/School of Medicine, University of St. Andrews,

KY16 9SS, UK

³³Joint PIs of CRUK-Prostate Cancer ICGC Project

³⁴Joint first authors made an equal contribution to this paper

³⁵Joint last authors made an equal contribution to this paper

*Correspondence should be addressed to: D.C.W (david.wedge@bdi.ox.ac.uk) & R.A.E (Rosalind.eeles@icr.ac.uk)

Abstract

Prostate cancer (PCa) represents a significant clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic PCa samples. From joint analysis of these cancers with those from previous studies, 930 cancers in total, we identified evidence for 22 novel putative coding driver genes, as well as evidence for *NEAT1* and *FOXA1* acting as drivers through non-coding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of PCa, for example establishing loss of *CHD1* and *BRCA2* as early events in cancer development of *ETS* fusion negative cancers. Computational chemogenomic (CanSAR) analysis of PCa mutations identified eleven targets of current drugs, eight of investigational drugs and fifty four compounds that may be active and should be considered candidates for future clinical trials.

INTRODUCTION

Prostate cancer is the most common solid cancer in men (diagnosed in 12%) and often fatal (9% of male cancer deaths). It is difficult to manage clinically due to a poor current understanding of what dictates its highly variable natural history, and of what underlies the development of castration-resistant disease¹. Extensive data on the structure of prostate cancer genomes have been published²⁻⁶, including work from our own consortium⁷⁻¹⁰. These studies have identified a number of genetically distinct subgroups, including cancers with *ERG*, *ETV1*, *ETV4*, *FLI1*, *SPOP*, *FOXA1* and *IDH1* alterations. Overlapping with these categories, cancers may have alterations in PI3K and DNA repair pathways, with the latter significantly over-represented in advanced disease⁴. However, we have relatively limited understanding of the ordering of genetic events with the exception that ETS gene alteration appears to represent an early event, whilst mutations of *AR* are later, sometimes convergent, events, occurring in advanced and metastatic disease. Indeed, we have very little understanding of the evolution of mutational processes, the various genetic paths that cancers traverse on their way to progression, the levels of heterogeneity at different stages of development or the effect of these factors on clinical outcome.

Gene status has been used in studies designed to improve the poor predictive value of conventional clinical markers (PSA, Gleason sum, stage) and to develop disease management strategies. For example, genetic alteration of *BRCA1/2*¹¹, *PTEN* deletion¹², amplification of *AURKA* together with the *MYCN* gene¹³, and coordinated loss of *MAP3K7* and *CHD1*¹⁴ have been reported to have prognostic value. A number of commercial prognostic tests based on gene expression profiles are also available [Prolaris^{TM 15}, Decipher^{TM 16} and OncotypeDx^{TM 17}] and a classification framework has been proposed¹⁸. Improvements in the treatment of castration-resistant disease have been made through

better targeting of AR regulation using abiraterone¹⁹ and enzalutamide²⁰, whilst PARP inhibitors are effective against cancers harbouring *BRCA1/2* mutations and other defects in DNA repair pathways²¹. However, a significant recent improvement in the treatment of newly diagnosed advanced prostate cancer has been achieved through using docetaxel in combination with hormone therapy, a re-tasking of conventional therapy²².

In the present study, we use previously unpublished whole genome DNA sequencing data in combination with published data to provide new insights into the mechanism of progression of prostate cancer to lethal disease, and to design novel molecular-based strategies for drug targeting.

RESULTS

We whole genome sequenced cancerous and matched normal samples from 87 primary prostate cancers from the UK and 5 from Shanghai, China together with 10 hormone-naïve prostate metastases and 10 castration-resistant metastases from the USA. Analysis (see Online Methods) reveals insights into the nature and order of acquisition of driver alterations, heterogeneity of genomic heterogeneity in primary and metastatic cancers, changes in mutational signatures during progression, and potential drug targets. In addition, we identified coding and non-coding drivers by combining single nucleotide variants (SNVs) and small insertions/deletions (indels) within our dataset with those from TCGA⁴ (425 samples), the COSMIC database²³ (243 samples) and Stand Up to Cancer²⁴ (SU2C-PCF, 150 samples) to give a combined dataset, hereafter referred to as the 'joint dataset', comprising 710 primary cancers and 220 metastases. Supplementary Table 1 summarises the genes affected in both our study and the joint dataset.

For the 112 cancer-normal pairs in our cohort, we identified 392,753 substitutions, 54,952 small insertion/deletions (indels) and 10,921 chromosomal rearrangements (Fig. 1). The mean genome-wide substitution rate across the whole dataset was 1.23/Mb, with a significant difference in mutational burden between the primary (0.99) and metastatic (2.30) samples (P=4.4x10⁻¹⁵, Online Methods). Moreover, within the metastatic subset, mutation burden was higher in men treated with androgen deprivation therapy (ADT or CRPC) with metastases than the treatment-naïve cases (2.98 vs 1.61, P=0.015). There were also significantly more rearrangements in metastatic than in primary samples (P=0.0059), whilst the proportion of breakpoints attributed to a chromoplexy-like event²⁵ was indistinguishable between the two groups. Within the metastatic group, the ADT samples had more rearrangements than did the hormone-naïve (P=0.027), with no difference in the proportion of chromoplexy-like events (Fig. 1).

Genes of interest were identified through a comprehensive set of analyses to identify: excess of non-synonymous mutations in coding regions; excess missense mutations within a gene, indicative of an oncogenic driver; excess of mutations in non-coding regions; regions with an excess of structural variants in either ETS+ or ETS- cancers; and regions with recurrent copy number aberrations in either ETS+ or ETS- cancers. Overall, we identified 73 genes with evidence for involvement in prostate cancer development (Fig. 2, Table 1, Supplementary Table 2). Based on a literature search, each gene was assigned a high, medium or low level of previous supporting evidence (Table 1, Supplementary Table 2). In addition to 22 genes with little or no previous evidence of involvement in prostate cancer for 8 further genes previously lacking strong evidence of driving prostate cancer (Table 1, 'medium' previous evidence).

Coding drivers

We identified 28 genes with an excess of non-synonymous coding mutations, five of which are previously unknown drivers in prostate cancer (Supplementary Table 2). *TBL1XR1* was enriched in truncating SNVs and indels and is also located in a genomic region enriched for rearrangements in ETS+ cancers (chr3: 172-179Mb) (Fig. 3). These rearrangements result in loss of heterozygosity (LOH) or, in one case, homozygous deletion, suggesting a cancer suppressor role for this gene. Another significantly mutated gene primarily affected by truncating mutations was *ZMYM3*, which encodes a component of CoREST, a transcriptional repressor complex including *REST* (RE-1 silencing transcription factor) and involved in suppression of neuronal differentiation-related genes in non-nervous tissues²⁶. In addition, two further CRPC samples from the SU2C-PCF study²⁴ had nonsense mutations and one sample within our study had a 70kb exonic deletion in *REST*.

Two other genes with recurrent truncating mutations were *IL6ST* and *CASZ1* (Fig. 3). The latter is a putative cancer suppressor in neuroblastoma²⁷ while the former encodes glycoprotein 130, the signal-transducing subunit of the interleukin 6 (IL6) receptor. The pattern of mutations we observe in the joint dataset for *IL6ST* is dominated by truncating events. Moreover, this gene is located in a genomic region recurrently rearranged in ETS+ cancers, resulting in either LOH or homozygous deletion (four cases of each), suggesting a cancer suppressive role. *TBX3*, which has previously been reported to harbor mutations in breast cancer²⁸, exhibited a mixed pattern of mutations with mostly missense mutations and two cancers harbouring truncating events.

Analysis of missense mutations identified mutations in seven further genes, of which two are newly reported (Supplementary Table 2). *CNOT3* exhibited mutation hotspots in two amino acid positions, p.E20K (4/932 samples) and p.E70K (5/932 samples), as well as a nonsense

mutation in a single sample (Fig. 3). *CNOT3* has a known cancer suppressive function in T-cell acute lymphoblastic leukaemia²⁹. Enrichment for missense mutations was identified in *RPL11* a ribosomal protein and a putative cancer suppressor upstream of the MDM2/TP53 pathway³⁰. In contrast to previous studies, the enrichment for missense mutations in both *CNOT3* and *RPL11* suggests oncogenic, rather than tumor suppressor, roles in prostate cancer.

A comparison between coding mutations in the metastatic and primary samples within the joint dataset identified enrichment in metastases for mutations in *TP53, AR, KMT2C, KMT2D, RB1, APC, BRCA2, CDK12, ZFHX3, CTNNB1, PIK3CB* (Supplementary Table 2), confirming previous studies^{3,24}.

Non-coding drivers

Analysis of the non-coding components of the genome identified two regions with statistically significant enrichment for mutations. *NEAT1*, a lncRNA recently reported to be associated with PCa progression³¹, was mutated in 13/112 ICGC cases with a significant over-representation in patients with metastatic disease (6/20 metastases vs. 7/91 primaries, Fisher exact test, P=0.012, Fig. 3). Interestingly, out of the metastatic cases *NEAT1* mutations were found only in patients that had undergone ADT, consistent with the link between high *NEAT1* expression and resistance to AR-targeting therapies³¹. Notably, two of these six cases had two separate *NEAT1* mutations. The *FOXA1* promoter also had significant evidence of selection. This gene modulates AR-regulated transcriptional signalling³² and has been found to harbor recurrent coding mutations in previous studies⁵. In our series, we identified 14 samples with coding and 6 samples with non-coding mutations, with two samples (PD14721a and PD12813a) bearing both a coding and a non-coding mutation. Interestingly, we also identified mutations in the *FOXP1* promoter, a gene with known cancer-suppressive effect in

prostate tumorigenesis³³, in three samples, but this was insufficient to reach statistical significance.

Structural variant enrichment in ETS+ and ETS- cancers

The density of rearrangements varies across the genome as a result of a variety of factors including chromatin state, GC content, gene density, replication timing and repetitive sequence. In order to remove the effect of these various factors, we segmented interbreakpoint distance across the genome separately in ETS+ and ETS- cancers and identified regions with differential enrichment for rearrangements between the two subtypes. The functional importance of many of these regions was supported by an excess of truncating mutations or CNAs.

In addition to regions previously identified as enriched for rearrangements in ETS+ cancers (*FOXP1, RYBP, SHQ1, PTEN*, and *TP53*)³⁴⁻³⁷, two unreported regions were identified. The region chr5:55-59Mb covers the genes *PPAP2A*, *PDE4D*, *MAP3K1* and *IL6ST* (Fig. 3). In *IL6ST* we also detected significant enrichment for coding mutations, suggesting this is the main target of the aberrations. In chr3:171:178Mb, *TBL1XR1* is similarly enriched for both rearrangements and truncating mutations.

In ETS- cancers, we confirmed a previously reported enrichment for rearrangements containing $CHD1^{(38,39)}$. A target of enriched rearrangements in the region chr1:149-158Mb is likely *ETV3*. In 5/9 cancers, *ETV3* was exclusively affected by these events (4 LOH by deletion and 1 by translocation). Additionally, one cancer had a truncating mutation (p.R413fs*3) and two had missense mutations (p.A73V and p.L37Q). In total, 12 patients had localised alteration, 10 of whom had ETS- cancers. In addition, eleven tumors, 8 of them ETS-, had LOH covering *ETV3*. Moreover, within the joint dataset, there are four cancer samples with truncating mutations in this gene. In contrast to *ETV4*, the nature of variants in

ETV3 is indicative of a tumor suppressive role in PCa. Manual inspection of the recurrently rearranged region chr3:76-84Mb identified *ROBO1* and *ROBO2* as possible targets (Fig. 3). In total 16/112 samples had an event affecting one or other of these genes, and in four samples both were affected. Previously implicated in pancreatic ductal adenocarcinoma⁴⁰, these two genes have not been previously reported in the context of PCa.

Events enriched at chr6:80-114Mb indicate that *ZNF292* is a possible target. 11/112 patients (5 ETS+ and 6 ETS-) had loss of at least one chromosome copy and in two patients there was a homozygous loss specifically targeting *ZNF292*. Moreover, the joint dataset contained 5/932 samples with a truncating mutation, further suggesting a cancer suppressive function for this gene in PCa. Another gene affected by recurrent rearrangements on 6q was *SENP6*, a small ubiquitin-like modifier (SUMO)-specific protease that removes SUMO polypeptides from conjugated proteins⁴¹, and possibly plays a role in *AR* function⁴². Of note, 4/5 rearrangements in this region affected *SENP6* only, leading to a significant reduction in expression (Supplementary Fig. 1). Finally, located at chr6:126Mb, the nuclear receptor co-activator *NCOA7* was altered in six samples, with one sample having homozygous loss.

Further regions enriched in ETS- cancers were chr2:133-144Mb (*LRP1B*), chr8:112-114 (*CSMD3*) and chr8:40-41Mb (*MYST3*). The first two genes are very large and fall within reported fragile sites⁴³. Nevertheless, preferential enrichment of breakpoints in ETS- cancers may suggest either that underlying structure, such as AR binding sites or nucleosome structure, or epistatic interactions between ETS fusion and other rearrangements affect the occurrence of rearrangements at these loci. Samples containing structural variants affecting MYST3 were found to have significantly reduced RNA expression (Supplementary Fig. 1).

Timing of copy number aberrations

In order to identify routes to progression in PCa, we developed a novel approach to order the occurrence of copy number aberrations by combining information on: the clonality of copy number aberrations; timing relative to whole genome duplication; timing of homozygous deletions relative to neighboring hemizygous losses. Information from all tumors was combined using a Bradley-Terry model, to give the most likely ordering of events. By applying a set of logical rules (see Online Methods), we deciphered the temporal ordering of the subclonal CNAs within each cancer. In general, homozygous deletions appear late in oncogenesis, corroborating previous findings that homozygous deletions are associated with more advanced disease⁴⁴⁻⁴⁶. Clear differences emerge in the evolution of PCa in the ETS+ and ETS- subsets. Where present, the deletion between the TMPRSS2 and ERG genes in ETS+ cancers was an early (generally clonal) event, as was gain of chr8q within the locus 112 – 137Mb (Fig. 4a). The earliest homozygous deletions in ETS+ cancers include chr5: 55Mb-59Mb, corroborating the rearrangements targeting *PPAP2A*, *PDE4D*, *MAP3K1* and *IL6ST*, and chr10:89Mb-90Mb, which covers *PTEN* (Figs. 3 and 4a).

In ETS- cancers losses at chr5:60–100Mb (*CHD1* and *RGMB*), chr13:32-91Mb (which includes *BRCA2*, *RB1* and *FOXO1*), and chr6:73-120Mb are followed by losses at chr2:124-142Mb, then by gains at chr3:100-187Mb, and then whole chromosome gain of chr7 (Fig. 4b). Loss of *CHD1* has been previously implicated in the initiation of ETS- prostate cancers, preventing ERG re-arrangement in the prostate³⁸ and our data confirm the exclusivity between ETS positivity and homozygous loss of *CHD1* (Fig. 4c).

In both ETS-positive and ETS-negative cancers, whole genome duplication (WGD) was correlated with the loss of chromosomal segments at: chr1:94Mb, chr2:140Mb, chr12:12Mb, chr16:85Mb and chr17:7Mb (Fig. 4c). From timing analysis, these losses appear to occur co-

synchronously with WGD in most cases. Gains at chr8:101Mb occurred prior to WGD, chr3:131Mb occurred synchronously, and gains at chr7:88Mb tended to follow WGD.

Timing point mutations and indels

Point substitutions and indels were clustered according to their cancer cell fraction (CCF) using a Bayesian Dirichlet process⁴⁷. The proportion of substitutions identified as subclonal showed considerable variation across cancers, but was significantly higher in primary than metastatic samples (Fig. 5a, P=0.022, Wilcoxon rank sum test), as was the proportion of subclonal indels (P=0.00033) and the fraction of the genome with subclonal copy number aberrations (P=0.0037, Supplementary Fig. 2). This is apparent evidence for a bottleneck in acquiring metastatic potential rather than a response to treatment, since levels of heterogeneity in untreated metastases are no lower than in androgen-deprived metastases (Fig. 5a).

The levels of heterogeneity observed in substitutions and indels were correlated (Fig. 5a, Pearson r = 0.57, P=2.3x10⁻⁹). Higher levels of heterogeneity were observed amongst indels than substitutions (*P*=2.4x10⁻⁸). However, it cannot be ruled out that variant calling of indels may have greater sensitivity for low allele frequency variants than calling of point substitutions.

Driver mutations were identified as clonal or subclonal according to the cluster to which they were assigned, with 84 classified as clonal and 22 (21%) as subclonal. Our power to detect subclonal mutations is limited by sequencing depth and the real number of subclonal driver mutations is likely to be much higher. The driver mutations identified as subclonal include two mutations in *APC* in the same sample, PD14713a. Interestingly, this cancer has undergone clonal loss of one copy of chr5q, followed by mutations in *APC* in 2 different subclones (Fig. 5b and Supplementary Fig. 3), suggesting convergent evolution. Five other

samples each have two subclonal drivers: PD12808a has a missense mutation in *ZNF292* and an essential splice site mutation in *SMAD2*; PD13401a has a nonsense mutation in *PPP1R3A* and a mutation in the promoter of *NEAT1*; PD13402a has a nonsense mutation in *USP34* and an essential splice site mutation in *ABI3BP* (Fig. 5b); PD12820a has a missense mutation in *USP48* and an essential splice site mutation in *ASXL2*; PD13389a has a frameshift mutation in *PHF12* and an essential splice site mutation in *TBX3* (not shown).

Subclonal mutations are also seen in several common drivers including one in *TP53* (PD13339a) and one in *PTEN* (PD12840a). On the other hand, *SPOP* was mutated in 10 samples, always clonally and always in ETS- tumors (Fig. 2).

Mutational signatures

Analysis of the mutational signatures by non-negative matrix factorisation (NMF) revealed that, in addition to the ubiquitous 'clock-like' signatures 1 and 5, there was presence of the previously described signatures 2, 3, 8, 13 and 18^{48} . Signature-3-positive samples were enriched for germline/somatic mutations in *BRCA1/2* genes (4/6 samples) as reported previously⁴⁸ (Fig. 1). However, the presence of high levels of microhomology (MH)-mediated deletions was even more strongly correlated with the presence of *BRCA* mutations (6/6 samples). Separating the mutations into early clonal, late clonal and subclonal epochs, as described in Online Methods, revealed that the proportion of signature 1 mutations decreases over time, suggesting an increase of cancer-associated mutagenic processes relative to innate processes in normal cells (P= 2.2×10^{-16} , test for trend in proportions).

Signature 13, previously associated with the activity of the AID/APOBEC family of cytidine deaminases, was over-represented in advanced disease, 45% (9/20) in metastases vs. 14% (14/92) in primaries, (Fisher exact test, $P=5.6 \times 10^{-3}$). Similarly, signature 18, which has been previously associated with failure of base excision repair and to the accumulation of

mutations from 8-Oxoguanine damage⁴⁹, was enriched in advanced disease, 40% (8/20) in metastases vs. 11% (10/92) in primaries (Fisher exact test, $P=3.8\times10^{-3}$). In a recent report of 560 breast cancer whole-genomes, signature 8 correlated with DNA damage repair deficiency⁵⁰. Androgen signalling is known to positively regulate multiple genes involved in DNA repair^{51,52}, while androgen deprivation impairs DNA double-strand break repair⁵³. In support of these previous reports, we have found that the proportion of mutations assigned to signature 8 is consistently higher amongst later appearing (subclonal) populations of cells (55% ± 24%) than earlier (clonal) populations (28% ± 12%) (*t*-test, $P=1.3\times10^{-4}$, Supplementary Table 3). The proportion of metastases with evidence for the action of signature 8 was higher than that for primary tumors, although not reaching statistical significance (8/20 metastases, 25/92 primaries, Fisher exact test P=0.28). Increased prevalence of DNA-damage related genes in metastatic prostate cancer as well as the observations made in this study warrant an extensive study of mutational signatures in therapy-naïve disease and CRPC in a larger dataset to explore the relevance of check-point inhibition as an alternative therapy for advanced prostate cancer.

Clinical correlates

CDH12 and *ANTXR2* alterations were significantly associated with time to biochemical recurrence (Benjamin-Hochberg adjusted P = 0.0060 (*CDH1*) & 0.012 (*ANTXR2*), HR = 9.3 & 7.7, Cox regression model, Fig. 6), and were significant predictors of biochemical recurrence independent of cofactors Gleason, PSA at prostatectomy, and pathological T-stage (P = 0.00061 (*CDH1*) & 0.0015 (*ANTXR2*), HR = 7.3 & 6.5, Cox regression model, Supplementary Table 4). A Cox regression model containing a combination of *CDH12*, *ANTXR2*, *SPOP*, *IL6ST*, *DLC1* & *MTUS1* mutations was determined to be an optimal predictor of time to biochemical recurrence and was a significant improvement over a baseline model of Gleason, PSA at prostatectomy, and pathological T-stage (model χ^2 test, *P* Page 16 of 46

= 0.00053). The number of mutational signatures identified in a cancer was negatively correlated with time to biochemical recurrence in prostatectomy patients (P = 0.014, HR = 3.0; Cox proportional hazards model on number of processes greater than 3, Supplementary Fig. 4) and is an independent predictor (P = 0.0061, HR = 3.6; Cox proportional hazards model). The number of substitutions detected was also an independent prognostic biomarker (P=0.031, HR=1.005; Cox proportional hazards model). The numbers of both samples and events within this study are modest and further analysis of larger cohorts is required to establish firmly these findings.

Druggable targets in the prostate cancer disease network

A key opportunity arising from systematic analyses of cancer genomics is the early objective identification of therapeutic intervention strategies. To this end, we applied established chemogenomic technologies using the canSAR knowledgebase⁵⁴ to map and pharmacologically annotate the cellular network of the prostate disease genes we identified in this study. We derived the network using curated protein-protein and transcriptional interaction data. We included the protein products of the genes identified in this study and other key proteins that either directly interact with several of these proteins or directly affect their function (see Online Methods and Supplementary Fig. 5 for details). This resulted in a focussed prostate network of 163 proteins. We annotated each of these proteins with drug information and annotated them based on multiple assessments of 'druggability': the likelihood of the protein to be amenable to small molecule drug intervention. (Table 2 and Supplementary Table 5). We find that PCa driver genes are embedded in a highly druggable cellular network that contains eleven targets of approved therapies and eight targets of investigational drugs. As well as the Androgen Receptor (AR) and the Glutocorticoid Receptor (GR), the network contains targets of drugs

approved for other indications, several of which (e.g. BRAF, ESR1, RARA, RXRA, HDAC3) are under clinical investigation for PCa.

Eight proteins within the prostate network are targets of drugs currently in clinical trials. In particular, the ataxia-telangiectasia mutated (ATM) inhibitor AZD-0156, currently in Phase 1 for safety assessment, is a likely candidate for exploration in PCa due to the recently described role of DNA damage repair, particularly in advanced PCas^{21,55}. The network highlights targets of PI3 Kinase pathway inhibitors (PI3K, AKT1) that are undergoing clinical investigation in PCa, as well as IDH1 and MDM2 drug targets.

To give an indication of the potential of these drugs, we analysed the most recent systematic drug sensitivity data (GDSC-⁵⁶- http://www.cancerrxgene.org/). Eighteen drugs acting on our network were tested in GDSC on prostate cancer cell lines. Of these, 5 showed significant effect on growth inhibition in at least one cell line, and all 18 showed weak activity in at least one cell line (Supplementary Table 6). However, to validate fully the potential of these drugs, extensive drug sensitivity testing needs to be performed in disease-relevant cancer models that correctly reflect the patient population.

Potential future opportunities for PCa therapy are also highlighted by 15 proteins that are under active chemical biology or drug discovery investigation (Table 2). These include the Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) and Menin (MEN1), a component of the MLL/SET1 histone methyltransferase complex. Mice with MEN1 mutations develop PCa⁵⁷ and recent data have shown that menin expression is involved in CRPC⁵⁸. A further 50 of the proteins are predicted to be druggable and therefore potentially amenable to drug discovery. These include the known PCa protein SPOP, the transcription activator BRG1 (SMARCA4); CDK12; and the CREB binding protein CREBBP.

In summary, we find that 74 of the 163 proteins central to the prostate disease network are either targets of existing drugs or have the potential to be targeted in the future. To maintain an up-to-date-view of this analysis, we provide a link to a live-page in canSAR

http://cansar.icr.ac.uk/cansar/publications/sequencing_prostate_cancers_identifies_new_canc er_genes_routes_progression_and_drug_targets/ (link via google chrome)

DISCUSSION

The analysis of whole genome sequence data from 112 prostate cancers has revealed many of the genetic factors underlying the processes of carcinogenesis, progression, metastasis and the acquisition of drug resistance. Supporting evidence has been provided for thirty candidate driver genes with limited or no previous support, including the non-coding drivers *NEAT1* and *FOXA1*.

Through the timing of genomic aberrations, we have a picture of the possible routes to progression in PCa. Most driver mutations may occur either clonally or subclonally, but mutations in *SPOP* and ETS-fusions occur early in cancer development and are exclusively clonal. Whereas the gain of 8q and ETS fusion appear to be sufficient to drive a dominant clonal expansion, ETS- cancers typically need a combination of large-scale losses, acquired over an extended period of time. Known cancer drivers are frequently observed subclonally and two competing drivers are seen in several cancers. Less heterogeneity of aberrations is observed in metastatic than primary cancers, likely resulting from a bottleneck in achieving metastatic potential.

We observe changes in the mutational processes operative upon cancers during progression. Signature 8 was operative to a greater extent at later stages, and was enriched in subclonal expansions, while signatures 13 and 18 were enriched in metastatic cancers. Cancers with germline or somatic *BRCA1/BRCA2* mutations were enriched for signature 3, demonstrating the effect of double-strand repair defects throughout cancer evolution.

Survival analysis reveals that losses of *CDH12* and *ANTXR2* result in poorer recurrence-free survival. We identify 84 PCa associated proteins that are either targets for currently available drugs or new potential targets for therapeutic development.

Analysis of the whole-genome sequences of over a hundred prostate cancers has started to reveal the complex evolutionary pathways of these cancers. The early acquisition of individual driver aberrations including ETS-fusions and whole genome duplications strongly affects the acquisition of subsequent aberrations. Acquisition of individual mutations affects both the subsequent likelihood of metastasis and response to treatment. Network analyses using the candidate driver genes here identified, in addition to previously known drivers, targets that can be exploited for immediate clinical investigation with existing drugs as well as targets for new drug discovery, giving potential for the results of genome analysis to be translated rapidly into therapeutic innovation and patient benefit.

ONLINE METHODS

Patient Cohorts, Samples and Ethics

92 cancer samples from prostatectomy patients treated at The Royal Marsden NHS Foundation Trust, London, at the Addenbrooke's Hospital, Cambridge, at Oxford University Hospitals NHS Trust, and at Changhai Hospital, Shanghai, China were collected as described previously^{59,60}. Clinical details for the patients are shown in Supplementary Table 7. Ethical approval was obtained from the respective local ethics committees and from The Trent Multicentre Research Ethics Committee. All patients were consented to ICGC standards https://icgc.org/. 20 men from PELICAN (Project to ELIminate lethal CANcer)⁶¹, an integrated clinical-molecular autopsy study of metastatic prostate cancer, were the subjects of the current study. Subjects consented to participate in the Johns Hopkins Medicine IRB-approved study between 1995 and 2005. (Supplementary Table 7). A17 had a germline *BRCA1* mutation, as previously reported⁶².

DNA preparation and DNA sequencing

DNA from whole blood samples and frozen tissue was extracted and quantified using a ds-DNA assay (UK-Quant-iTTM PicoGreen® dsDNA Assay Kit for DNA) following the manufacturer's instructions with a Fluorescence Microplate Reader (Biotek SynergyHT, Biotek). Acceptable DNA had a concentration of at least 50ng/µl in TE (10mM Tris/1mM EDTA), was between 1.8-2.0 with an OD 260/280. WGS was performed at Illumina, Inc. (Illumina Sequencing Facility, San Diego, CA USA) or the BGI (Beijing Genome Institute, Hong Kong), as described previously, to a target depth of 50X for the cancer samples and 30X for matched controls⁵⁹.

The Burrows-Wheeler Aligner (BWA) was used to align the sequencing data to the GRCh37 reference human genome⁶³. Sequencing data have been deposited at the European Genome-phenome Archive (EGAS00001000262).

Variant Calling Pipeline

Substitutions, insertions and deletions were detected using the Cancer Genome Project Wellcome Trust Sanger Institute pipeline as described previously⁵⁹. In brief, substitutions were detected using CaVEMan with a cut-off 'somatic' probability of 95%. Post-processing filters were applied. Insertions and deletions were called using a modified version of Pindel⁶⁴. Variant allele frequencies of all indels were corrected by local realignment of unmapped reads against the mutant sequence. Structural variants were detected using Brass⁵⁹. A positive ETS status was assigned if a breakpoint between *ERG*, *ETV1* or *ETV4* and previously reported partner DNA sequences was detected.

Data availability

Sequencing data that support the findings of this study have been deposited in the European Genome-phenome Archive with the accession code EGAS00001000262 (https://www.ebi.ac.uk/ega/studies/EGAS00001000262). See Supplementary Table 7 for sample specific EGA accession codes.

Code availability

The CGP pipeline may be downloaded from <u>https://github.com/cancerit/dockstore-cgpwgs</u>. The Battenberg pipeline may be downloaded from <u>https://github.com/Wedge-</u> Oxford/battenberg.

Mutation burdens

Mutation burdens were compared between primary and metastatic samples and between ADT and hormone-naïve samples using a negative binomial generalised linear model (GLM), implemented with the R package *MASS*. Sample type was found to be an independent predictor of number of SNVs, as was age at time of sampling.

Timing of copy number events

We developed a novel approach to order the occurrence of copy number aberrations by combining three sources of information:

- Clonality of copy number aberrations
- Timing relative to whole genome duplication

• Timing of homozygous deletions relative to neighboring hemizygous losses.

Information from all tumors was combined using a Bradley-Terry model, to give the most likely ordering of events during progression of PCa.

The Battenberg algorithm was used to detect clonal and subclonal somatic copy-number alterations (CNAs) and to estimate ploidy and cancer content from the next-generation sequencing data as previously described⁶⁵. Briefly, germline heterozygous SNPs were phased using Impute2, and a- and b- alleles were assigned. Data were segmented using piecewise constant fitting⁶⁶ and subclonal copy-number segments were identified via a *t*-test as those with b-allele frequencies that differed significantly from the values expected of a clonal copy number state. Ploidy and cancer purity were estimated with the same method used by $ASCAT^{67}$.

In this cohort, we defined WGD samples as those that had an average ploidy greater than 3. For tumors that had not undergone WGD, gains were defined as those regions that had at least one allele with copy number greater than 1, while losses were defined as those segments that undergone LOH. For tumors that had undergone WGD, losses were called in those segments with at least one allele with copy number of less than 2, whereas gains were called for those with an allelic copy number greater than 2. An extension of this logic was used for subclonal copy number segments – the evolving cellular fraction was always defined as that which deviated away from overall ploidy (defined as 2 for non-WGD samples and 4 for WGD samples). For example, if 75% of cells within a non-WGD tumor have a copy number of 3 + 1 at a given genomic loci, with the remaining 25% of cells having a copy number of 2 + 1, then we assume there has been clonal gain to 2 + 1, and then a subclone containing 75% of cells has undergone a further gain.

Three independent approaches were used to extract evolutionary data from each cancer sample. The first involved ordering clustered sub-clonal cancer fractions, the second used implicit ordering of clonal HDs in relation to losses, and the third estimated the relative timing of whole genome duplication. The logical arguments used within each approach were considered in turn:

1. Battenberg algorithm-derived estimates for the cellular fraction and standard deviation of each subclonal aberration were input to a Markov Chain Monte Carlo hierarchical Bayesian Dirichlet process to group linked events together in an unsupervised manner. This defined clusters of different cell populations, each present at a calculated cancer cell fraction. The pigeonhole principle was then used to determine the hierarchical relationship between these clusters. Using this process, gains, losses and HDs were ordered with the following caveat to ensure that only independent events are ordered: if there was a clonal and subclonal gain (or loss) at the same locus, then only the clonal or initial gain (or loss) was ordered.

2. Homozygous deletions have implicitly occurred after loss of heterozygosity at the same locus.

3. The parsimony principle was used to define the allele counts that correspond to early and late changes in relation to WGD. For losses, if the minor allele copy number equals 0, then the loss occurred prior to WGD. Otherwise the loss occurred after WGD. Regarding gains, if the major allele copy number is twice or greater than ploidy, then the gain occurred prior to WGD. Otherwise, the gain occurred after WGD.

The above arguments allow us to gain insights into the order of copy number events within each individual tumor sample. To establish a consensus order across a cohort of tumor samples requires the ordering data to be integrated across all samples. As specific copy number events (location of breakpoints and the individual copy number states) tend to be unique to individual samples, we defined reference copy number segments that occurred recurrently. These were then used to build an overall contingency table.

The reference genomic segments were defined as regions that were recurrently aberrant. Regions of significant recurrence (false detection rate (FDR), P < 0.05) were determined by performing 100,000 simulations, placing the copy number aberrations detected from each sample in random locations within the genome. The process was repeated for gains, LOH and HDs and the randomly generated copy number landscape compared to that arising from this cohort provided significance levels. Each significantly aberrant region was initially segmented using all breakpoints from all the events that contributed to that region. For instance, the significantly enriched region for LOH: chr8: 0-44Mb contains over 300 breakpoints drawn from from all the samples which contain LOH at chromosome 8p. We computed significantly recurrent regions and reference segments for both ETS+ and ETS-sample subgroups.

Performing pair-wise comparisons between all segmented results using the Bradley-Terry method described below proved computationally expensive and therefore the total number of segments used in the pairwise comparison was rationalised by grouping reference segments to make combined segments of minimum length 1 MB.

We then considered each tumor sample in turn. If any copy number event overlapped the reference genomic segments and was ordered in relation to any other event (that also overlapped regions of significance), those overlapped reference segments were ordered in comparison to other overlapped reference segments. In addition to these reference segments, the TMRPSS2-ERG deletion was ordered more stringently by considering only those segments that could result in the gene fusion, and not merely overlap the locus. In this

manner, a contingency table of contests was constructed, using reference genomic segments as the variables. We built contingency tables for both ETS+ and ETS- tumor samples to determine whether their evolutionary trajectory differed significantly.

An implementation of the Bradley-Terry model of pairwise comparison in R^{68} with bias reduced maximum likelihood estimated the ability or overall order of each individual reference segment.

Subclonal Analysis

The fraction of each cancer genome with subclonal copy number aberrations was calculated as the total amount of the genome with subclonal CNA, as identified by the Battenberg algorithm, divided by the total amount of the genome that had copy number aberrations. One sample (PD13397a, Supplementary Table 8) was identified as having very low cellularity, as it had a completely flat copy number profile and only 411 identified SNVs. Since CNAs could not called in this sample, it was not possible to adjust allele frequencies to CCFs and this sample was excluded from subclonality analysis. Point substitutions and indels were separately clustered using a Bayesian Dirichlet process, as previously described⁴⁷. Clonal variants are expected to cluster at a CCF close to 1.0. However, in 18 tumors (Supplementary Table 8), there was no cluster in the range [0.95,1.05]. The likely cause of a shift in CCF is inaccuracy in copy number calling and these samples therefore failed quality control and were excluded from subclonality analysis. From Markov Chain Monte Carlo sampling carried out within the Dirichlet process model, the posterior probability of each variant having a CCF below 0.95 was estimated. Variants with a probability above 80% were designated as 'subclonal', those with probability below 20% were designated 'clonal' and those with intermediate probabilities were designated as 'uncertain'. The fraction of subclonal variants

used in Fig. 5 and Supplementary Fig. 2 was then calculated after excluding uncertain variants.

Mutational Spectra

The mutational spectra, defined by the triplets of nucleotides around each mutation of each sample were deconvoluted into mutational processes as previously described^{48,69}. Clonal and subclonal variants were separated, as defined above. Further separation of clonal mutations was performed for mutations in genomic regions that had undergone copy number gains. These mutations were classified as 'early' or 'late' depending whether their observed allele frequencies were more likely to indicate their presence on 2 or 1 chromosome copies, respectively, as assessed by binomial probability. Assignment of mutations to mutational signatures was carried out on each subset of mutations (early, late, clonal, subclonal), as well as on all mutations from each sample (Supplementary Table 3).

Clinical survival analyses

A Cox regression model was fitted to 71 features: every gene with mutations (breakpoints, subs or indels) with a potential functional impact (missense, nonsense, start-lost, inframe, frameshift, or occurred in a non-coding transcript) or a CNA highlighted by the copy number aberration analysis that occurred in three of more prostatectomy patients. The endpoint was biochemical recurrence. *P*-values were adjusted for multiple testing using the Benjamini-Hochberg method. Multivariate analyses were performed on all genes found to be significant using discretised Gleason (6, 7, 8 or 9), pathological T-stage (T2, T3) and PSA at prostatectomy as cofactors. Gene selection for the optimal predictor of time to biochemical recurrence was determined using Lasso⁷⁰, a shrinkage and selection method for linear regression, starting with all genes that had a significant association with time to biochemical recurrence. Standard algorithms were used for survival analyses and statistical associations.

Identifying novel oncogenes

The joint dataset was compiled from the aggregation of variants called within our samples with 3 other datasets, yielding a total of 930 samples, comprised of 710 primary and 220 metastatic samples:

- **TCGA**⁴, 425 primary cancer samples, whole exome sequencing with SureSelect Exome v3 baits on Illumina HiSeq 2000, average coverage ~100X
- **COSMIC database**²², 243 samples, curated set of mutations from several sources, http://cancer.sanger.ac.uk/cosmic
- Stand Up to Cancer²³ (SU2C-PCF), 150 metastatic castrate resistant samples, pairedend, whole exome sequencing with SureSelect Exome v4 baits on Illumina HiSeq2000, average coverage ~160X

To identify coding and non-coding drivers from substitutions and indels, we used two previously described methods⁵⁰. Coding drivers on the joint dataset (930 cancers) were identified using dNdScv, a dN/dS method designed to quantify positive selection in cancer genomes. dNdScv models somatic mutations in a given gene as a Poisson process. Inferences on selection are carried out separately for missense substitutions, truncating substitutions (nonsense and essential splice site mutations) and indels, and then combined into a global P-value per gene. Non-coding recurrence was studied using NBR. Both dNdScv and NBR model the variation of the mutation rate across the genome using a negative binomial regression with covariates. First, Poisson regression is used to obtain maximum-likelihood estimates for the 192 rate parameters (r_j) describing each of the possible trinucleotide substitutions in a strand-specific manner. $r_j = n_j/L_j$, where n_j is the total number of mutations observed across samples of a given trinucleotide class (j) and L_j is the number of available sites for each trinucleotide. These rates are used to estimate the total number of mutations

across samples expected under neutrality in each element considering the mutational signatures active in the cohort and the sequence of the elements ($E_h = \Sigma_j r_j L_{j,h}$). This estimate assumes no variation of the mutation rate across elements in the genome. Second, a negative binomial regression is used to refine this estimate of the background mutation rate of an element, using covariates and E_h as an offset. Both methods identify genes or non-coding regions with higher than expected mutation recurrence, correcting for gene length, sequence composition, mutation signatures acting across patients and for the variation of the mutation rate along the genome. A QQ-plot confirmed that *P*-values obtained from this method in this cohort were not subject to inflation and consequent over-calling of driver genes (Supplementary Fig. 6).

Chromoplexy, characterized by highly clustered genomic breakpoints that occur in chains and are sometimes joined by deletion bridges, has been shown to be prevalent in PCa²⁵. To identify rearrangement drivers, we first used ChainFinder²⁵ to account for any bias towards regions with chromoplexy and identified 'unique' rearranged regions per sample taking the mid-point between all the breakpoints ChainFinder assigns to the same chromoplexy event. Next, separately aggregating the ICGC samples with and without ERG fusions, we calculated inter-breakpoint distance and performed piecewise constant fitting (PCF)⁶⁶ to identify genomic regions which were recurrently rearranged in multiple samples. Rearranged regions with potential functional impact were identified using two criteria: a minimum 3-fold difference in the number of SVs per MB of ERG+ and ERG- samples; region contains at least one gene with multiple samples with truncating events, i.e. homozygous deletion, stop codon, frameshift indel or essential splice site mutation. In addition, several identified regions were significantly enriched for LOH in either ETS+ or ETS- samples, from copy number analysis (see above). The variants identified in key regions are depicted in Fig. 3.

Chemogenomics annotation of the prostate cancer network

To construct the network, we used the 82 protein products of the genes identified in this study (hereon referred to as Prostate Proteins) to seed a search for all possible interacting proteins in the canSAR interactome⁵⁴. This interactome contains merged and curated data from the IMeX consortium⁷¹, Phosphosite (http://www.phosphosite.org/), and other databases. It includes:

1) interactions where there were more than two publications reporting experiments demonstrating the binary interaction between the two proteins

2) interactions where there is 3D protein structural evidence of a direct complex

3) interactions where there are at least two publications reporting that one protein is a substrate of the other

4) interactions where there are at least two papers reporting that one protein is the product of a gene under the direct regulatory control of the other

It excludes the following:

A) interactions that were inferred from a large immunoprecipitation experiment without follow-up to demonstrate the specific binary interaction

B) interactions inferred from text mining

C) interactions inferred from co-occurrence in publications or from gene expression correlation.

The initial prostate cancer seeded network resulted in a large collection of 3366 proteins that have some experimental evidence of interacting with at least one Prostate Protein. When we added extra proteins into the network, we wanted to ensure that we only add proteins that are

more likely to function primarily through interaction with the proteins in the network rather than just be generic major hubs. To this end, we carried out the following steps: Starting with the input (prostate protein) list, we obtained all possible first neighbours. We then computed, for each new protein, the proportion of its first neighbours that are in the original input list. To define the proteins that are most likely to function through our network, we calculated the chances of these proportions occurring in a random network. We did this by randomising our interactome 10,000 times and computing how often the observed proportions can be achieved by chance (empirical p-value). We corrected the p-values for multiple testing and retained only proteins that have corrected FDR p-values less than 0.05. (Supplementary Fig. 5). We performed network minimisation to maintain only proteins that are strongly connected to more than one Prostate Protein or whose only connection is to one of the Prostate Proteins. We identified a Prostate Cancer network of 163 proteins. Using canSAR's Cancer Protein Annotation Tool (CPAT)⁷², we annotated the 163 proteins with pharmacological and druggability data. We labelled proteins that are: 1) targets of approved drugs; 2) targets of drugs under clinical investigation, 3) targets of preclinical or discovery stage compounds that are active at concentrations equal to or less than 100 nM against the protein of interest 4) proteins that we predict to be druggable using our structural druggability prediction protocols⁷²⁻⁷⁵ but that have few or no published active inhibitors – these are potential targets for future drug discovery.

ACKNOWLEDGEMENTS

We acknowledge support from Cancer Research UK C5047/A22530, C309/A11566, C368/A6743, A368/A7990, C14303/A17197 and the Dallaglio Foundation, The NIHR support to The Biomedical Research Centre at The Institute of Cancer Research and The

Royal Marsden NHS Foundation Trust; Cancer Research UK funding to The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust CRUK Centre; the National Cancer Research Institute (National Institute of Health Research (NIHR) Collaborative Study: "Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT)" (grant G0500966/75466); the Li Ka Shing foundation (DCW, DJW). The Academy of Finland and Cancer Society of Finland (GSB). We thank the National Institute for Health Research, Hutchison Whampoa Limited, University of Cambridge, the Human Research Tissue Bank (Addenbrooke's Hospital) which is supported by the NIHR Cambridge Biomedical Research Centre, The Core Facilities at the Cancer Research UK Cambridge Institute, Orchid and Cancer Research UK, Dave Holland from the Infrastructure Management Team & Peter Clapham from the Informatics Systems Group at the Wellcome Trust Sanger Institute. DMB is supported by Orchid. We also acknowledge support from The Bob Champion Cancer Research Trust, The Masonic Charitable Foundation and The King Family. PW is a Cancer Research Life Fellow. We acknowledge core facilities provided by CRUK funding to the CRUK ICR Centre, the CRUK Cancer Therapeutics Unit and support for canSAR C35696/A23187 and NIHR finding to the Biomedical Research Centre at Royal Marsden NHS Foundation Trust and Institute of Cancer Research. The authors would like to thank those men with prostate cancer and the subjects who have donated their time and their samples to the Cambridge, Oxford, The Institute of Cancer Research, John Hopkins, and University of Tampere BioMediTech Biorepositories for this study. We also would like to acknowledge support of the research staff in S4 who so carefully curated the samples and the follow-up data (Jo Burge, Marie Corcoran, Anne George, and Sara Stearn).

FIGURE LEGENDS

Figure 1. Mutational landscape of prostate cancers. From top-to-bottom: mutation status of DNA repair genes, ETS fusion status and sample type; proportion of mutations assigned to each signature⁴⁸; number of somatic point substitutions identified in each sample; proportion of small insertions/deletions associated with microhomology or repetitive regions; number of insertions, deletions and complex insertions/deletions in each sample; total number of structural variants in each sample, separated into inversions, translocations, deletions and tandem duplications. Sample ordering is reported in Supplementary Table 7.

Figure 2. Landscape of driver genes in prostate cancer. Genes were identified using three different methods: upper panel shows genes that have undergone genetic aberration in at least 6 samples; middle panel shows genes with aberrations enriched in either ERG+ or ERG-cancers (Fisher exact test for *PTEN*, *TP53*, *SPOP*, 3p13, *PDE4D*, *PPAP2A*; *ROBO1* and *ROBO2* are in a region enriched for SVs in ETS- tumors; *IL6ST* is in a region enriched for SVs in ETS+ tumors); lower panel shows genes enriched in metastatic samples (Fisher exact test). DDR = DNA damage response, 'hemi.loss' = loss of heterozygosity resulting from copy number change, 'homo.loss' = homozygous deletion resulting from copy number aberration, 'two allele loss + sub/indel' indicates genes in triploid regions bearing aberrations of all 3 gene copies. Sample ordering is reported in Supplementary Table 7.

Figure 3. Putative novel driver genes. Putative drivers are shown in red and genomic aberrations are displayed as: missense SNVs – circles; nonsense SNVs – open triangles; essential splice site mutations – open squares; indels – closed squares; non-coding mutations – closed triangles; simple SV - yellow cross; chromoplexy event – blue cross; region enriched for loss of heterozygosity, with height proportional to the number samples containing LOH -

pink shading; region enriched for homozygous deletions, with height proportional to the number of samples containing homozygous deletion – blue shading.

Figure 4. Temporal evolution of copy number aberrations in ETS+ and ETS- prostate cancer. For (a) ETS+ cancers, and (b) ETS- cancers: Left: The landscape of copy number aberrations with genomic loci plotted against fraction of cancers. Loss-of-heterozygosity is depicted in blue, homozygous deletions in black, gains in red, *TMPRSS2-ERG* deletion in brown and whole genome duplication in green. Right: The temporal evolution of significantly recurrent (p < 0.05) copy number aberrations by genomic loci over time (mean with 95% confidence intervals, log precedence relative to arbitrary reference). Lower values indicate earlier events (c) Pairwise associations among copy number aberrations. Recurrently aberrant regions with a false discovery rate < 0.1 are shown. Associations are indicated by odds ratio (OR) with brown colors depicting mutually exclusive events and blue-green colors depicting correlated events. Genomic loci annotated by: type of aberration (G=gain, L=loss, HD=homozygous deletion); chromosome; median position in Mb. For focal events the putative target genes are annotated.

Figure 5. Heterogeneity and subclonal mutations. (a) Metastatic tumors have less heterogeneity than primary tumors, whether assessed from SNVs or indels. Each dot represents a different sample, colored by sample type. x-axis = fraction of point substitutions that are subclonal, y-axis = fraction of indels that are subclonal, contour lines calculated using R package kde2d. (b) Samples with multiple subclonal mutations in driver genes. Fraction of cancer cells carrying mutation is shown as grey histogram for all mutations and as red ovals for mutations in known driver genes. Mutations are clustered using a Dirichlet process as previously described⁴⁷, with thick plum-colored lines indicating fitted distribution and pale blue regions indicating 95% posterior confidence intervals. Peaks with a subclonal mutations.

Figure 6. Clinical outcome. Kaplan-Meier plots for biochemical recurrence. Kaplan-Meier plots of recurrent mutated genes where there is a significant correlation with time to biochemical recurrence after prostatectomy (P < 0.05; Cox regression model; Benjamin-Hochberg multiple testing correction). Clinical information was available for 89 prostatectomy samples with WGS data, with a median follow up of 1108 days in which biochemical recurrence occurred in 26 patients. The mutations in both genes consisted of a frameshift deletion in one sample and structural variants in the remaining samples.

Table 1. Putative driver genes. Genes were identified in our study using several methods, detailed in the last column: dN/dS; enrichment for SVs or CNAs in ETS+ or ETS- cancers; enrichment for truncating mutations or homozygous deletions, clinical correlation. From a PubMed literature search, prior evidence for each gene being a driver of prostate cancer was classified as 'low' if the gene has not been previously reported as playing a role in prostate cancer tumorigenesis or progression. Isolated alterations may have been observed or biological evidence for importance may have been presented as indicated in the prior evidence column. Prior evidence was classified as 'medium' for genes reported previously as playing a role in prostate carcinogenesis or progression but currently lacking statistical support based on genetic alterations. Evidence considered included presence of multiple genetic alterations, SNP associations, and known cancer genes in other tissues. The high confidence genes are those that are widely accepted to represent cancer genes and to be altered in prostate cancer: this would include genes such as HRAS, SPOP, IDH1 etc. In each case there are two or more of the following: statistical verification of higher incidence, biological experiments, clinical correlations, confirmation in multiple studies, recognition as cancer genes in other cancer types. dN/dS = non-synonymous: synonymous ratio, calculated for all SNVs and indels; dN/dS (missesnse) = non-synonymous: synonymous ratio, calculated for missense SNVs only; SV = structural variant; CNA = copy number aberration; SNV =

single nucleotide variant; indel = small insertion/deletion; ETS = E26 transformation-specific.

Table 2. Drug targets identified from CanSAR analysis. Proteins in bold typeface are derived from genes identified as prostate drivers in this study or proteins that have a significant known interaction with these proteins.

SUPPLEMENTARY FIGURE AND TABLE LEGENDS

Supplementary Figure 1. RNA expression of novel driver genes. Data are taken from the CamCaP study, which includes 40 samples from this study. All genes identified as novel within this study and bearing structural variants in at least 2 samples are shown. P-values are from Wilcoxon rank sum test.

Supplementary Figure 2. Heterogeneity of point substitutions and copy number aberrations. Each dot represents a different sample, colored by sample type. x-axis = amount of each genome that has subclonal CNA divided by the total amount of each genome that is copy-number aberrant, y-axis = fraction of point substitutions that are subclonal, contour lines calculated using R package kde2d.

Supplementary Figure 3. Multiple driver mutations in *APC*. (a) Mutations in *APC* gene in PD14713a are mutually exclusive, indicating that they have occurred in separate subclonal populations. Each blue or yellow string represents a forward or backward read, with somatic variants shown in red. Mutations in the left-hand and right-hand red boxed regions never occur on the same reads. (b) PD14713a is haploid on chromosome 5q, so the mutual exclusivity of APC mutations cannot be explained by occurrence in different chromosome
copies. Purple lines show total copy number, blue lines show minor allele specific copy number, called by the Battenberg algorithm.

Supplementary Figure 4. Prognostic biomarkers. (a) Kaplan-Meier plot of the number of mutational processes detected vs time to biochemical recurrence (b) Correlation between the number of processes detected and the number of substitutions detected. There was a significant positive correlation (r = 0.31, P = 0.0027; Spearman's correlation). The number of mutational signatures identified in a cancer was negatively correlated with time to biochemical recurrence in prostatectomy patients (P = 0.014, HR = 3.0; Cox proportional hazards model on number of processes greater than three. The number of substitutions detected was also an independent prognostic biomarker (P = 0.031, HR = 1.0005; Cox proportional hazards model).

Supplementary Figure 5. Processes used in the canSAR analysis.

Supplementary Figure 6. dN/dS analysis. QQ plot of the *P*-values derived from dN/dS analysis show no sign of inflation. Four genes (of 20,184) had p-values = 0 and are not shown on this plot.

Supplementary Table 1. Summary of sample specific genetic aberrations. Worksheet 1 reports the number of genetic aberrations identified in each gene this study, separated by type: essential splice site, frameshift, inframe, missense, nonsense, silent, stop-lost, homozygous deletion, rearrangement. We also report the number of samples with multiple hits resulting in homozygous loss. Worksheet 2 reports the number of genetic aberrations identified in each gene across the joint dataset. Worksheet 3 reports the samples within our dataset that bear homozygous losses in each gene. Worksheet 4 contains results of dNdScv analysis to identify coding drivers. Novel drivers are shown with red text. Significant q-values (FDR < 0.1) from analysing either missense SNVs or all SNVs and indels are shown

with green shading. Effect sizes (dN/dS values) are reported separately for missense, nonsense, essential splice site and indel variants. Worksheet 5 contains results of NBR analysis to identify non-coding drivers. Significant regions (FDR < 0.1) are shown with blue / purple shading.

Supplementary Table 2. Classification of Driver Genes. See Table 1.

Supplementary Table 3. Mutational signature analysis. For each sample, the number of somatic mutations attributed to each signature is shown in worksheet 1. Worksheet 2 reports the number of mutations assigned to each signature, broken down into temporal categories (early, late, clonal, subclonal) as described in Online Methods.

Supplementary Table 4. Survival analyses. Cox regression model results for the presence of recurrent in genes with time to biochemical recurrence after prostatectomy as endpoint. Multivariate analysis was performed taking into account cofactors Gleason (6-9), PSA at prostatectomy, and pathological T-stage (T2, T3). Clinical information was available for 89 prostatectomy samples with WGS data, with a median follow up of 1108 days in which biochemical recurrence occurred in 26 patients. Red background shading indicates features that have a significant association with outcome in both univariate analyses after multiple testing correction and multivariate analyses. Dark grey shading indicates features that are only significant without multiple testing correction. Light grey shading indicates features that are significant in univariate but not in multivariate analyses.

Supplementary Table 5. Druggability analysis. Genes identified using the CanSAR software. Genes are color-coded: bright green = target of an approved drug; dark green = target of an investigational drug; yellow = target that is being investigated chemically; red = no chemical information in public databases, but predicted to be druggable using our structure-based method.

Supplementary Table 6. Drug sensitivity data. Of the drugs identified through CanSAR analysis, 18 are reported in the Genomics of Drug Sensitivity in Cancer database. Of these, 5 showed significant effect on growth inhibition in at least one cell line, and all 18 showed weak activity in at least one cell line.

Supplementary Table 7. Clinical and Molecular Details of Cancers Subject to DNA

Sequencing. The order of samples in Fig. 1 and Fig. 2 are in the columns fig1_order and

fig2_order.

Supplementary Table 8. Details of samples included and excluded from the subclonal

analysis.

REFERENCES

- 1. Attard, G. *et al.* Prostate cancer. *Lancet* **387**, 70-82 (2016).
- 2. Weischenfeldt, J. *et al.* Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. *Cancer Cell* **23**, 159-70 (2013).
- 3. Grasso, C.S. *et al.* The mutational landscape of lethal castration-resistant prostate cancer. *Nature* **487**, 239-43 (2012).
- 4. Cancer Genome Atlas Research, The Molecular Taxonomy of Primary Prostate Cancer. *Cell* **163**, 1011-25 (2015).
- 5. Barbieri, C.E. *et al.* Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. *Nat Genet* **44**, 685-9 (2012).
- 6. Berger, M.F. *et al.* The genomic complexity of primary human prostate cancer. *Nature* **470**, 214-20 (2011).
- 7. Lalonde, E. *et al.* Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. *Lancet Oncol* **15**, 1521-32 (2014).
- 8. Cooper, C.S., Eeles, R., Wedge, D.C. & Van Loo, P. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. **47**, 367-72 (2015).
- 9. Boutros, P.C. *et al.* Spatial genomic heterogeneity within localized, multifocal prostate cancer. *Nat Genet* **47**, 736-45 (2015).
- 10. Gundem, G. *et al.* The evolutionary history of lethal metastatic prostate cancer. *Nature* **520**, 353-7 (2015).
- 11. Castro, E. *et al.* Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. *Eur Urol* **68**, 186-93 (2015).
- 12. Kluth, M. *et al.* Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer. *Int J Cancer* **137**, 2354-63 (2015).

- 13. Mosquera, J.M. *et al.* Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. *Neoplasia* **15**, 1-10 (2013).
- 14. Rodrigues, L.U. *et al.* Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer. *Cancer Res* **75**, 1021-34 (2015).
- 15. Cuzick, J. *et al.* Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. *Lancet Oncol* **12**, 245-55 (2011).
- 16. Klein, E.A. *et al.* Decipher Genomic Classifier Measured on Prostate Biopsy Predicts Metastasis Risk. *Urology* **90**, 148-52 (2016).
- 17. Bostrom, P.J. *et al.* Genomic Predictors of Outcome in Prostate Cancer. *Eur Urol* **68**, 1033-44 (2015).
- 18. Luca, B.-A. *et al.* DESNT: A Poor Prognosis Category of Human Prostate Cancer. *European Urology Focus*.
- 19. Ryan, C.J. *et al.* Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. *Lancet Oncol* **16**, 152-60 (2015).
- 20. Loriot, Y. *et al.* Effect of enzalutamide on health-related quality of life, pain, and skeletalrelated events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial. *Lancet Oncol* **16**, 509-21 (2015).
- 21. Mateo, J. *et al.* DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N Engl J Med* **373**, 1697-708 (2015).
- 22. James, N.D. *et al.* Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. *Lancet* **387**, 1163-77 (2016).
- 23. Forbes, S.A. *et al.* COSMIC: exploring the world's knowledge of somatic mutations in human cancer. *Nucleic Acids Res* **43**, D805-11 (2015).
- 24. Robinson, D. *et al.* Integrative clinical genomics of advanced prostate cancer. *Cell* **161**, 1215-28 (2015).
- 25. Baca, S.C. *et al.* Punctuated evolution of prostate cancer genomes. *Cell* **153**, 666-77 (2013).
- 26. Svensson, C. *et al.* REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. *Nucleic Acids Res* **42**, 999-1015 (2014).
- 27. Liu, Z. *et al.* CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. *Cell Death Differ* **18**, 1174-83 (2011).
- 28. Fischer, K. & Pflugfelder, G.O. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression. *Front Oncol* **5**, 244 (2015).
- 29. De Keersmaecker, K. *et al.* Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. *Nat Genet* **45**, 186-90 (2013).
- 30. Sasaki, M. *et al.* Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. *Nat Med* **17**, 944-51 (2011).
- 31. Chakravarty, D. *et al.* The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. *Nat Commun* **5**, 5383 (2014).
- 32. Yang, Y.A. & Yu, J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. *Genes Dis* **2**, 144-151 (2015).
- 33. Takayama, K. *et al.* Integrative analysis of FOXP1 function reveals a tumor-suppressive effect in prostate cancer. *Mol Endocrinol* **28**, 2012-24 (2014).
- 34. Krohn, A. *et al.* Recurrent deletion of 3p13 targets multiple tumour suppressor genes and defines a distinct subgroup of aggressive ERG fusion-positive prostate cancers. *J Pathol* **231**, 130-41 (2013).

- 35. Carver, B.S. *et al.* Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. *Nat Genet* **41**, 619-24 (2009).
- 36. King, J.C. *et al.* Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. *Nat Genet* **41**, 524-6 (2009).
- 37. Kluth, M. *et al.* Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. *Int J Cancer* **135**, 1369-80 (2014).
- 38. Burkhardt, L. *et al.* CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. *Cancer Res* **73**, 2795-805 (2013).
- 39. Liu, W. *et al.* Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. *Oncogene* **31**, 3939-48 (2012).
- 40. Biankin, A.V. *et al.* Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. *Nature* **491**, 399-405 (2012).
- 41. Heun, P. SUMOrganization of the nucleus. *Curr Opin Cell Biol* **19**, 350-5 (2007).
- 42. Kaikkonen, S. *et al.* SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. *Mol Endocrinol* **23**, 292-307 (2009).
- 43. Smith, D.I., Zhu, Y., McAvoy, S. & Kuhn, R. Common fragile sites, extremely large genes, neural development and cancer. *Cancer Lett* **232**, 48-57 (2006).
- 44. Taylor, B.S. *et al.* Integrative genomic profiling of human prostate cancer. *Cancer Cell* **18**, 11-22 (2010).
- 45. Williams, J.L., Greer, P.A. & Squire, J.A. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. *Cancer Genet* **207**, 474-88 (2014).
- 46. Chen, Z. *et al.* Crucial role of p53-dependent cellular senescence in suppression of Ptendeficient tumorigenesis. *Nature* **436**, 725-30 (2005).
- 47. Bolli, N. *et al.* Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. *Nat Commun* **5**, 2997 (2014).
- 48. Alexandrov, L.B. *et al.* Signatures of mutational processes in human cancer. *Nature* **500**, 415-21 (2013).
- 49. Pilati, C. *et al.* Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. *J Pathol* (2017).
- 50. Nik-Zainal, S. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* **534**, 47-54 (2016).
- 51. Polkinghorn, W.R. *et al.* Androgen receptor signaling regulates DNA repair in prostate cancers. *Cancer Discov* **3**, 1245-53 (2013).
- 52. Goodwin, J.F. *et al.* DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. *Cancer Cell* **28**, 97-113 (2015).
- 53. Tarish, F.L. *et al.* Castration radiosensitizes prostate cancer tissue by impairing DNA doublestrand break repair. *Sci Transl Med* **7**, 312re11 (2015).
- 54. Tym, J.E. *et al.* canSAR: an updated cancer research and drug discovery knowledgebase. *Nucleic Acids Res* **44**, D938-43 (2016).
- 55. Leongamornlert, D. *et al.* Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. *Br J Cancer* **110**, 1663-72 (2014).
- 56. Yang, W. *et al.* Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. *Nucleic Acids Res* **41**, D955-61 (2013).
- 57. Seigne, C. *et al.* Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice. *BMC Cancer* **10**, 395 (2010).
- 58. Malik, R. *et al.* Targeting the MLL complex in castration-resistant prostate cancer. *Nat Med* **21**, 344-52 (2015).

- 59. Cooper, C.S. *et al.* Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. *Nat Genet* (2015).
- 60. Mao, X. *et al.* Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. *Cancer Res* **70**, 5207-12 (2010).
- 61. Liu, W. *et al.* Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. *Nat Med* **15**, 559-65 (2009).
- 62. Nickerson, M.L. *et al.* Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. *Hum Mutat* **34**, 1231-41 (2013).
- 63. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**, 589-95 (2010).
- 64. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. *Bioinformatics* **25**, 2865-71 (2009).
- 65. Nik-Zainal, S. *et al.* The life history of 21 breast cancers. *Cell* **149**, 994-1007 (2012).
- 66. Nilsen, G. *et al.* Copynumber: Efficient algorithms for single- and multi-track copy number segmentation. *BMC Genomics* **13**, 591 (2012).
- 67. Van Loo, P. *et al.* Allele-specific copy number analysis of tumors. *Proc Natl Acad Sci U S A* **107**, 16910-5 (2010).
- 68. Firth, D. & Turner, H.L. Bradley-Terry models in R: the BradleyTerry2 package. *Journal of Statistical Software* **48**(2012).
- 69. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. *Cell Rep* **3**, 246-59 (2013).
- 70. Shin, S., Fine, J. & Liu, Y. Adaptive Estimation with Partially Overlapping Models. *Stat Sin* **26**, 235-253 (2016).
- 71. Orchard, S. *et al.* Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. *Nat Methods* **9**, 345-50 (2012).
- 72. Patel, M.N., Halling-Brown, M.D., Tym, J.E., Workman, P. & Al-Lazikani, B. Objective assessment of cancer genes for drug discovery. *Nat Rev Drug Discov* **12**, 35-50 (2013).
- 73. Bulusu, K.C., Tym, J.E., Coker, E.A., Schierz, A.C. & Al-Lazikani, B. canSAR: updated cancer research and drug discovery knowledgebase. *Nucleic Acids Res* **42**, D1040-7 (2014).
- 74. Mitsopoulos, C., Schierz, A.C., Workman, P. & Al-Lazikani, B. Distinctive Behaviors of Druggable Proteins in Cellular Networks. *PLoS Comput Biol* **11**, e1004597 (2015).
- 75. Workman, P. & Al-Lazikani, B. Drugging cancer genomes. *Nat Rev Drug Discov* **12**, 889-90 (2013).
- 76. Rudnicka, C. *et al.* Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer. *Medicine (Baltimore)* **95**, e5085 (2016).
- 77. Zhang, H. *et al.* FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. *Cancer Res* **71**, 3257-67 (2011).
- 78. Malinowska, K. *et al.* Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. *Endocr Relat Cancer* **16**, 155-69 (2009).
- 79. FitzGerald, L.M. *et al.* Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease. *Eur J Hum Genet* **17**, 368-77 (2009).
- Zhao, W., Cao, L., Zeng, S., Qin, H. & Men, T. Upregulation of miR-556-5p promoted prostate cancer cell proliferation by suppressing PPP2R2A expression. *Biomed Pharmacother* **75**, 142-7 (2015).

- 81. Parray, A. *et al.* ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. *Int J Cancer* **135**, 2493-506 (2014).
- 82. Daniels, G. *et al.* TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth. *Endocr Relat Cancer* **21**, 127-42 (2014).
- 83. Jones, S. *et al.* Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. *Hum Mutat* **33**, 100-3 (2012).
- 84. Collart, M.A., Kassem, S. & Villanyi, Z. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Histidine Starvation. *Front Genet* **8**, 61 (2017).

Author contribution

RAE, CSC, DN, DSB, CSF, SB, AGL, PW, BA, DCW, FCH and DFE designed the study.

RAE, CSC, DCW and DB wrote the paper, and all other authors contributed to revisions.

ZKJ, HW, CEM, DN, VG, AGL, RAE, FCH, SB, AYW, CSF, CV, DMB, ND, SM, SH, WH, Y-JL, AL, JK, KK, HL, LM, SE, LMatthews, AN, YY, HZ, ST, EB, CF, NL, SH, DNicol, PG, VK, NVA, PK, CO, DC, AT, EM, ER, TD, NCS, coordinated sample collection, pathology review and processing.

DCW, GG, TM, IM, DJW, DSB, MG, JZ, AB, LGB, SD, BK, NC, VB, DL, SM, TD, MA, STavare, CG, KR, DG, AM, LS, JT, AF, UM, supported, directed and performed the analyses. CS and the TCGA, JdeB and GA provided data for the meta-analysis.

TABLE 1				
gene	Mutation type(s)	Previous evidence	Prior evidence	Evidence in our study
ADAM28	SV, CNA	low	⁷⁶ biological evidence	SVs and CNA in ETS+
ANTXR2	SV, SNV/indel	low	none	clinical correlation
ASH1L	SV, SNV/indel	low	25	truncating mutations, SVs in ETS-
CDH12	SV	low	none	clinical correlation
FOXO1	CNA	low	⁷⁷ biological evidence	CNA in ETS-
IL6ST	SV	low	⁷⁸ biological evidence	dN/dS, SVs and CNA in ETS+, clinical correlation
LCE2B	SNV/indel	low	none	dN/dS (missense)
MAP3K1	SV, CNA	low	none	SVs, CNA in ETS+
MYST3	SV	low	25	SVs in ETS-, RNA expression
NCOA7	SV	low	none	SVs in ETS-
NDST4	SNV/indel	low	none	dN/dS (missense)
NEAT1	non-coding	low	³¹ biological evidence	non-coding
PDE4D	SV	low	⁷⁹ SNP data	SVs and CNA in ETS+
PPAP2A	SV	low	⁷⁹ SNP data	SVs and CNA in ETS+
PPP2R2A	SV	low	⁸⁰ biological evidence	SVs and CNAs in ETS+
ROBO1	SV	low	⁸¹ biological evidence	SVs in ETS+
ROBO2	SV	low	25	SVs in ETS+
RPL11	SNV/indel	low	25	dN/dS (missense)
SENP6	SV	low	⁴² biological evidence	enriched SVs, RNA expression
TBL1XR1	SNV/indel,SV	low	⁸² known AR co-regulator biological evidence	dN/dS
USP28	SV, CNA, SNV/indel	low	none	SVs, CNA, SNV/indel
ZNF292	SV, CNA SNV/indel,	low	25	enriched SVs, homozygous deletions, truncating mutations
ARID1A	SNV/indel	medium	83	dN/dS
CASZ1	SNV/indel	medium	COSMIC, TCGA and SU2C	dN/dS
CNOT3	SNV/indel	medium	⁸⁴ Mut. in leukemia	dN/dS (missense)
LRP1B	SV, CNA	medium	⁷⁹ SNP data	SVs and CNA in ETS-
PIK3R1	SNV/indel	medium	24	dN/dS
RGMB	CNA	medium	³⁸ deletions	CNA in ETS-
ТВХЗ	SNV/indel	medium	known breast cancer gene	dN/dS
ZMYM3	SNV/indel	medium	COSMIC SU2C	dN/dS

Table 2

Target of approved drug

AR, BRAF, ESR1, HDAC3, KCNH2, MAP2K1, NR3C1, RARA, RARB, RARG, RXRA

Target of investigational drug AKT1, ATM, LRRK2, MDM2, PDE4D, PIK3CA, PIK3CB, TP53

Target being investigated chemically AHR, BRCA1, CTNNB1, HRAS, IDH1, ITPR1, ITPR2, JUN, MAP3K1, MEN1, NCOR1, NCOR2, NR4A1, PIK3R1, PPP2R2A

Predicted target by structure-based method

ANTXR2, APC, ARNT, ASH1L, BRCA2, CBFA2T2, CDH12, CDK12, CHD1, CREBBP, DLC1, DOCK10, ERG, ESCO1, ETV3, FOXA1, FOXG1, FOXO1, FOXO4, FOXP1, GATA1, GATA2, HDGF, HNF4A, IL6ST, KAT6A, KDM4A, KDM6A, KMT2C, KMT2D, NEDD4L, NKX3-1, PIAS1, PIAS2, PTEN, RB1, RNF43, SKI, SMAD2, SMAD3, SMAD4, SMARCA4, SPDEF, SPOP, TBL1X, TBL1XR1, TBX3, TP73, ZBTB16, ZHX2

×

• •

NEAT1

chr11 position

65,190,268

Figure 5

CDH12

ANTXR2

SUPP FIG 3

•

5

b

4000

2000

SUPP FIG.5

canSAR'interactome' 478,660'protein5protein'and' transcrip8onal'interac8ons'' between'17326'dis8nct'proteins'

QQ-plot

-log10 (Expected P-value)

SUPPLEMENTARY TABLE 1

ensg	gene	source	ess_spl fr	ames in	framimi	ssen no	onser sil	ent s	tart-lc st	op-lo
ENSG00001	ERG	cgp	0	0	0	1	0	0	0	0
ENSG00001	PTEN	cgp	1	1	1	6	0	0	0	0
ENSG000014	TP53	cgp	0	6	0	6	1	0	0	0
ENSG00001	CDKN1B	cgp	0	0	0	0	3	0	0	0
ENSG00001	PDE4D	cgp	0	0	0	0	1	0	0	0
ENSG00001	ROBO1	cgp	0	0	0	0	0	2	0	0
ENSG00001	ROBO2	cgp	0	0	0	2	0	1	0	0
ENSG00001	ZNF292	cgp	0	0	0	1	0	0	0	0
ENSG000012	FOXA1	cgp	0	3	6	5	0	0	0	0
ENSG000000	PPAP2A	cgp	0	1	0	0	0	0	0	0
ENSG00001	ETV3	cgp	0	1	0	2	0	0	0	0
ENSG000004	ADAM28	cgp	0	1	0	0	0	2	0	0
ENSG000013	IL6ST	cgp	0	1	0	0	0	0	0	0
ENSG000008	MYST3	cgp	0	0	0	0	1	0	0	0
ENSG000022	PPP2R2A	cgp	1	0	0	0	0	0	0	0
ENSG00001	AR	cgp	0	0	0	3	0	0	0	0
ENSG000013	APC	cgp	0	1	0	0	1	1	0	0
ENSG00001	ASH1L	cgp	0	1	0	0	0	0	0	0
ENSG00001	DLC1	cgp	0	0	0	1	0	0	0	0
ENSG000019	NCOR2	cgp	0	0	0	1	0	0	0	0
ENSG00001	CDH12	cgp	0	1	0	0	0	0	0	0
ENSG000000	KMT2C	cgp	0	2	1	3	2	1	0	0
ENSG00001	SENP6	cgp	0	0	0	1	0	0	0	0
ENSG00001	ANTXR2	cgp	0	1	0	0	0	0	0	0
ENSG000000	ARID4B	cgp	0	0	0	2	0	0	0	0
ENSG000014	ASXL2	cgp	1	0	0	1	0	0	0	0
ENSG000013	DOCK10	cgp	0	0	0	2	0	0	0	0
ENSG000013	RB1	cgp	0	0	0	2	0	0	0	0
ENSG000014	ZFHX3	cgp	0	2	0	1	0	0	0	0
ENSG00001	TBL1XR1	cgp	2	0	0	1	0	0	0	0
ENSG000014	ATM	cgp	0	1	0	0	1	0	0	0
ENSG000013	BRCA2	cgp	0	0	1	0	0	1	0	0
ENSG00001	CDK12	cgp	0	2	0	0	0	0	0	0
ENSG000014	KDM6A	cgp	0	2	0	1	1	0	0	0
ENSG000014	NCOR1	cgp	0	0	0	1	0	0	0	0
ENSG00001	ARID1A	cgp	0	1	0	0	1	0	0	0
ENSG00001	CTNNB1	cgp	0	0	1	1	0	0	0	0
ENSG00001	SMAD2	cgp	1	0	0	1	0	0	0	0

ENSG0000014 SMAD4	cgp	0	1	0	0	0	0	0	0
ENSG000001 [,] ZMYM3	cgp	0	1	0	1	0	0	0	0

homod n_	rearr_icgc_chr	5	start	end	strand
0	56	21	39751949	40033704	-1
13	28	10	89622870	89731687	1
1	19	17	7565257	7590856	-1
0	15	12	12867992	12875305	1
3	13	5	58264865	59817947	-1
0	11	3	78646390	79816965	-1
0	11	3	77089294	77699114	1
3	11	6	87862551	87973914	1
0	10	14	38059189	38064239	-1
1	10	5	54720682	54830878	-1
0	9	1	157090983	157108266	-1
0	8	8	24151580	24212726	1
3	8	5	55230925	55290821	-1
0	8	8	41799567	41909505	-1
2	8	8	26149007	26230196	1
0	7 X		66763874	66950461	1
0	6	5	112043195	112203279	1
0	6	1	155305052	155532324	-1
1	6	8	13162116	13372429	-1
0	6	12	124808957	125052010	-1
0	5	5	21750777	22853731	-1
1	5	7	151832007	152133628	-1
0	5	6	76311225	76427997	1
0	4	4	80898662	80994477	-1
0	4	1	235330210	235490802	-1
1	4	2	25960557	26101385	-1
0	4	2	225629807	225907330	-1
3	4	13	48877887	49056122	1
0	4	16	72816784	73082274	-1
1	3	3	176738542	176915048	-1
0	2	11	108175402	108186638	1
2	2	13	32889611	32973347	1
0	2	17	37617739	37690800	1
0	2 X		44732423	44971847	1
1	2	17	15933408	16118874	-1
0	1	1	27022522	27108601	1
0	1	3	41236328	41301587	1
0	1	18	45359466	45457517	-1

0	1	18	48556583	48611415	1
0	1 X		70459474	70474996	-1

multiple_hit_all_number	multiple_h	multiple_hit_mt_and	_sv_number
0	0	0	
7	5	5	
12	12	1	
1	0	1	
1	1	1	
0	0	0	
0	0	0	
0	0	0	
4	0	4	
0	0	0	
0	0	0	
1	1	0	
1	1	0	
1	1	0	
0	0	0	
2	0	2	
2	2	0	
0	0	0	
1	1	0	
0	0	0	
0	0	0	
0	0	0	
1	1	0	
0	0	0	
0	0	0	
1	1	1	
0	0	0	
2	2	1	
0	0	0	
0	0	0	
2	1	1	
2	2	0	
0	0	0	
1	0	1	
1	1	0	
0	0	0	
0	0	0	
0	0	0	

1 1 0 0 0 0

gene	source	ess_splice	frameshift	inframe	missense	nonsense	silent	start-lost
ADAM28	tcga	0	1	1	0	0	1	0
ERG	cgp	0	0	0	1	0	0	0
ANTXR2	tcga	0	0	0	0	1	0	0
ANTXR2	SU2C-PCF	0	2	0	0	0	0	0
PTEN	cgp	1	1	1	6	0	0	0
APC	SU2C-PCF	0	7	0	1	3	0	0
APC	tcga	0	2	0	2	5	0	0
APC	COSMIC	0	7	0	0	4	1	0
TP53	cgp	0	6	0	6	1	0	0
AR	tcga	0	0	0	3	0	0	0
AR	SU2C-PCF	0	0	1	26	0	6	0
AR	COSMIC	0	0	0	5	0	0	0
CDKN1B	cgp	0	0	0	0	3	0	0
ARID1A	COSMIC	0	0	1	2	1	0	0
ARID1A	tcga	0	0	3	3	1	1	0
ARID1A	SU2C-PCF	0	1	0	4	0	0	0
PDE4D	cgp	0	0	0	0	1	0	0
ARID4B	tcga	0	1	0	1	0	2	1
ARID4B	SU2C-PCF	0	0	0	1	0	0	0
ROBO1	cgp	0	0	0	0	0	2	0
ASH1L	tcga	0	3	0	2	3	1	0
ASH1L	SU2C-PCF	0	0	0	0	1	2	0
ASH1L	COSMIC	0	1	0	2	1	0	0
ROBO2	cgp	0	0	0	2	0	1	0
ASXL2	COSMIC	0	0	0	2	2	0	0
ASXL2	tcga	0	1	0	1	0	0	0
ASXL2	SU2C-PCF	0	1	0	3	0	2	0
ZNF292	cgp	0	0	0	1	0	0	0
ATM	SU2C-PCF	0	3	0	1	4	0	0
ATM	tcga	0	3	0	16	0	2	0
ATM	COSMIC	0	3	0	5	0	0	0
FOXA1	cgp	0	3	6	5	0	0	0
BRCA2	tcga	0	4	0	3	0	2	0
BRCA2	COSMIC	0	0	0	1	1	1	0
BRCA2	SU2C-PCF	0	8	0	2	0	0	0
PPAP2A	cgp	0	1	0	0	0	0	0
CDH12	SU2C-PCF	0	0	0	1	0	0	0
CDH12	COSMIC	0	0	0	1	0	1	0
CDH12	tcga	0	0	0	4	1	0	0
ETV3	cgp	0	1	0	2	0	0	0

CDK12	tcga	1	3	0	6	2	1	0
CDK12	COSMIC	0	2	0	1	0	0	0
CDK12	SU2C-PCF	0	5	0	2	2	3	0
ADAM28	cgp	0	1	0	0	0	2	0
IL6ST	cgp	0	1	0	0	0	0	0
CDKN1B	SU2C-PCF	0	2	0	0	0	0	0
CDKN1B	tcga	0	4	0	0	1	0	0
CDKN1B	COSMIC	0	3	0	1	0	1	0
CHD1	tcga	0	3	0	3	1	2	0
CHD1	COSMIC	0	0	0	2	1	0	0
CHD1	SU2C-PCF	0	2	0	2	1	0	0
CTNNB1	COSMIC	0	0	0	4	0	1	0
CTNNB1	tcga	0	0	0	11	0	0	0
CTNNB1	SU2C-PCF	0	0	0	6	0	0	0
MYST3	cgp	0	0	0	0	1	0	0
DLC1	tcga	0	0	0	3	0	1	0
DLC1	COSMIC	0	0	0	2	0	1	0
DLC1	SU2C-PCF	0	0	0	5	0	1	0
PPP2R2A	cgp	1	0	0	0	0	0	0
DOCK10	COSMIC	0	0	0	1	0	0	0
DOCK10	SU2C-PCF	0	0	0	2	1	1	0
DOCK10	tcga	0	0	0	4	2	1	0
AR	cgp	0	0	0	3	0	0	0
APC	cgp	0	1	0	0	1	1	0
ERG	tcga	0	0	0	0	0	1	0
ERG	SU2C-PCF	0	0	0	1	0	0	0
ASH1L	cgp	0	1	0	0	0	0	0
ETV3	tcga	0	1	0	1	1	0	0
ETV3	COSMIC	0	0	0	0	1	0	0
DLC1	cgp	0	0	0	1	0	0	0
FOXA1	SU2C-PCF	0	5	4	9	0	1	0
FOXA1	tcga	0	4	5	12	0	2	0
FOXA1	COSMIC	0	1	0	5	0	0	0
FOXP1	tcga	0	1	1	0	2	2	0
FOXP1	COSMIC	0	0	1	1	0	0	0
NCOR2	cgp	0	0	0	1	0	0	0
IL6ST	tcga	1	2	0	2	0	0	0
IL6ST	COSMIC	0	0	0	1	2	0	0
KDM6A	tcga	3	3	0	2	1	1	0
KDM6A	COSMIC	0	3	0	5	0	1	0
KDM6A	SU2C-PCF	0	2	0	2	0	0	0

CDH12	cgp	0	1	0	0	0	0	0
KMT2C	SU2C-PCF	0	2	0	12	8	5	0
KMT2C	tcga	1	4	0	8	5	3	0
KMT2C	COSMIC	0	2	0	7	1	3	0
KMT2C	cgp	0	2	1	3	2	1	0
MAP3K1	tcga	0	0	0	1	0	0	0
MAP3K1	SU2C-PCF	0	0	0	0	0	1	0
MTUS1	SU2C-PCF	0	0	0	1	0	0	0
MTUS1	tcga	0	0	1	1	1	0	0
SENP6	cgp	0	0	0	1	0	0	0
MYST3	tcga	0	0	0	3	0	0	0
MYST3	COSMIC	0	0	0	1	0	0	0
NCOA7	SU2C-PCF	0	0	0	1	1	0	0
NCOR1	SU2C-PCF	0	1	1	0	0	0	0
NCOR1	tcga	0	3	1	3	1	2	0
NCOR1	COSMIC	0	0	0	2	1	1	0
ANTXR2	cgp	0	1	0	0	0	0	0
ARID4B	cgp	0	0	0	2	0	0	0
NCOR2	COSMIC	0	0	0	0	1	1	0
NCOR2	SU2C-PCF	0	1	0	7	1	9	0
NCOR2	tcga	0	1	1	2	1	0	0
NKX3-1	COSMIC	0	0	0	2	0	0	0
NKX3-1	tcga	0	1	0	4	0	0	0
ASXL2	cgp	1	0	0	1	0	0	0
PDE4D	SU2C-PCF	0	0	0	1	0	0	0
PIK3R1	COSMIC	0	1	0	0	0	0	0
PIK3R1	SU2C-PCF	0	0	1	1	0	0	0
PIK3R1	tcga	0	0	0	1	0	0	0
DOCK10	cgp	0	0	0	2	0	0	0
PPAP2A	tcga	0	0	0	1	1	0	0
PPAP2A	SU2C-PCF	0	1	0	3	0	0	0
PPAP2A	COSMIC	0	0	1	0	0	0	0
RB1	cgp	0	0	0	2	0	0	0
ZFHX3	cgp	0	2	0	1	0	0	0
PTEN	SU2C-PCF	0	5	0	1	3	0	0
PTEN	COSMIC	0	2	1	5	3	0	0
PTEN	tcga	1	7	1	4	1	0	0
TBL1XR1	cgp	2	0	0	1	0	0	0
RB1	COSMIC	0	3	0	0	1	0	0
RB1	tcga	1	1	0	1	0	1	0
RB1	SU2C-PCF	0	3	0	0	1	0	0

ATM	cgp	0	1	0	0	1	0	0
ROBO1	SU2C-PCF	0	0	0	5	0	4	0
ROBO1	tcga	0	1	0	5	0	1	0
BRCA2	cgp	0	0	1	0	0	1	0
ROBO2	COSMIC	0	0	0	3	0	1	0
ROBO2	SU2C-PCF	0	1	0	2	0	0	0
ROBO2	tcga	0	0	0	4	1	0	0
RYBP	tcga	1	0	0	4	0	0	0
CDK12	cgp	0	2	0	0	0	0	0
SENP6	tcga	0	0	0	0	0	1	0
SHQ1	COSMIC	0	0	0	1	0	0	0
SMAD2	COSMIC	0	0	0	1	1	0	0
SMAD2	tcga	0	1	0	1	0	0	0
KDM6A	cgp	0	2	0	1	1	0	0
SMAD4	tcga	0	0	0	4	0	0	0
SMAD4	COSMIC	0	0	0	1	1	0	0
SMAD4	SU2C-PCF	0	0	0	0	0	1	0
NCOR1	cgp	0	0	0	1	0	0	0
ARID1A	cgp	0	1	0	0	1	0	0
TBL1XR1	COSMIC	0	1	0	0	0	0	0
TBL1XR1	SU2C-PCF	0	1	0	0	0	0	0
TBL1XR1	tcga	1	1	0	0	0	0	0
CTNNB1	cgp	0	0	1	1	0	0	0
TP53	COSMIC	0	5	0	31	3	0	0
TP53	SU2C-PCF	0	14	4	33	6	0	0
TP53	tcga	6	7	0	33	0	0	0
USP28	COSMIC	0	0	0	5	0	0	0
USP28	SU2C-PCF	0	3	0	0	1	0	0
USP28	tcga	0	0	1	0	1	0	0
ZBTB16	SU2C-PCF	0	0	0	1	1	1	1
ZBTB16	tcga	0	0	0	2	0	0	0
SMAD2	cgp	1	0	0	1	0	0	0
ZFHX3	COSMIC	0	3	0	5	2	4	0
ZFHX3	SU2C-PCF	0	4	0	4	2	4	0
ZFHX3	tcga	0	6	0	5	3	5	0
ZMYM3	COSMIC	0	3	0	4	0	0	0
ZMYM3	SU2C-PCF	0	1	0	1	0	0	0
ZMYM3	tcga	1	4	0	3	1	0	0
SMAD4	cgp	0	1	0	0	0	0	0
ZMYM3	cgp	0	1	0	1	0	0	0
ZNF292	COSMIC	0	0	0	3	0	0	0

ZNF292	SU2C-PCF	0	1	0	0	1	1	0
ZNF292	tcga	0	1	0	2	2	1	0

stop-lost	chr	start	end	strand	ensg
0	8	24151580	24212726	1	ENSG00000042980
0	21	39751949	40033704	-1	ENSG00000157554
0	4	80898662	80994477	-1	ENSG00000163297
0	4	80898662	80994477	-1	ENSG00000163297
0	10	89622870	89731687	1	ENSG00000171862
0	5	112043195	112203279	1	ENSG00000134982
0	5	112043195	112203279	1	ENSG00000134982
0	5	112043195	112203279	1	ENSG00000134982
0	17	7565257	7590856	-1	ENSG00000141510
0	Х	66763874	66950461	1	ENSG00000169083
0	Х	66763874	66950461	1	ENSG00000169083
0	Х	66763874	66950461	1	ENSG00000169083
0	12	12867992	12875305	1	ENSG00000111276
0	1	27022522	27108601	1	ENSG00000117713
0	1	27022522	27108601	1	ENSG00000117713
0	1	27022522	27108601	1	ENSG00000117713
0	5	58264865	59817947	-1	ENSG00000113448
0	1	235330210	235490802	-1	ENSG0000054267
0	1	235330210	235490802	-1	ENSG0000054267
0	3	78646390	79816965	-1	ENSG00000169855
0	1	155305052	155532324	-1	ENSG00000116539
0	1	155305052	155532324	-1	ENSG00000116539
0	1	155305052	155532324	-1	ENSG00000116539
0	3	77089294	77699114	1	ENSG00000185008
0	2	25960557	26101385	-1	ENSG00000143970
0	2	25960557	26101385	-1	ENSG00000143970
0	2	25960557	26101385	-1	ENSG00000143970
0	6	87862551	87973914	1	ENSG00000188994
0	11	108175402	108186638	1	ENSG00000149311
0	11	108175402	108186638	1	ENSG00000149311
0	11	108175402	108186638	1	ENSG00000149311
0	14	38059189	38064239	-1	ENSG00000129514
0	13	32889611	32973347	1	ENSG00000139618
0	13	32889611	32973347	1	ENSG00000139618
0	13	32889611	32973347	1	ENSG00000139618
0	5	54720682	54830878	-1	ENSG0000067113
0	5	21750777	22853731	-1	ENSG00000154162
0	5	21750777	22853731	-1	ENSG00000154162
0	5	21750777	22853731	-1	ENSG00000154162
0	1	157090983	157108266	-1	ENSG00000117036

0	17	37617739	37690800	1 ENSG00000167258	
0	17	37617739	37690800	1 ENSG00000167258	
0	17	37617739	37690800	1 ENSG00000167258	
0	8	24151580	24212726	1 ENSG0000042980	
0	5	55230925	55290821	-1 ENSG00000134352	
0	12	12867992	12875305	1 ENSG00000111276	
0	12	12867992	12875305	1 ENSG00000111276	
0	12	12867992	12875305	1 ENSG00000111276	
0	5	98190908	98262240	-1 ENSG00000153922	
0	5	98190908	98262240	-1 ENSG00000153922	
0	5	98190908	98262240	-1 ENSG00000153922	
0	3	41236328	41301587	1 ENSG00000153922	
0	3	41236328	41301587	1 ENSG00000153922	
0	3	41236328	41301587	1 ENSG00000153922	
0	8	41799567	41909505	-1 ENSG0000083168	
0	8	13162116	13372429	-1 ENSG00000164741	
0	8	13162116	13372429	-1 ENSG00000164741	
0	8	13162116	13372429	-1 ENSG00000164741	
0	8	26149007	26230196	1 ENSG00000221914	
0	2	225629807	225907330	-1 ENSG00000135905	
0	2	225629807	225907330	-1 ENSG00000135905	
0	2	225629807	225907330	-1 ENSG00000135905	
0	Х	66763874	66950461	1 ENSG00000169083	
0	5	112043195	112203279	1 ENSG00000134982	
0	21	39751949	40033704	-1 ENSG00000157554	
0	21	39751949	40033704	-1 ENSG00000157554	
0	1	155305052	155532324	-1 ENSG00000116539	
0	1	157090983	157108266	-1 ENSG00000117036	
0	1	157090983	157108266	-1 ENSG00000117036	
0	8	13162116	13372429	-1 ENSG00000164741	
0	14	38059189	38064239	-1 ENSG00000129514	
1	14	38059189	38064239	-1 ENSG00000129514	
0	14	38059189	38064239	-1 ENSG00000129514	
0	3	71003844	71633140	-1 ENSG00000114861	
0	3	71003844	71633140	-1 ENSG00000114861	
0	12	124808957	125052010	-1 ENSG00000196498	
0	5	55230925	55290821	-1 ENSG00000134352	
0	5	55230925	55290821	-1 ENSG00000134352	
0	Х	44732423	44971847	1 ENSG00000147050	
0 X		44732423	44971847	1 ENSG00000147050	
0 X		44732423	44971847	1 ENSG00000147050	

0	5	21750777	22853731	-1 ENSG00000154162
0	7	151832007	152133628	-1 ENSG00000055609
0	7	151832007	152133628	-1 ENSG00000055609
0	7	151832007	152133628	-1 ENSG0000055609
0	7	151832007	152133628	-1 ENSG0000055609
0	5	56111401	56191979	1 ENSG0000095015
0	5	56111401	56191979	1 ENSG0000095015
0	8	17501304	17658426	-1 ENSG00000129422
0	8	17501304	17658426	-1 ENSG00000129422
0	6	76311225	76427997	1 ENSG00000112701
0	8	41799567	41909505	-1 ENSG0000083168
0	8	41799567	41909505	-1 ENSG0000083168
0	6	126111909	126253176	1 ENSG00000111912
0	17	15933408	16118874	-1 ENSG00000141027
0	17	15933408	16118874	-1 ENSG00000141027
0	17	15933408	16118874	-1 ENSG00000141027
0	4	80898662	80994477	-1 ENSG00000163297
0	1	235330210	235490802	-1 ENSG0000054267
0	12	124808957	125052010	-1 ENSG00000196498
0	12	124808957	125052010	-1 ENSG00000196498
0	12	124808957	125052010	-1 ENSG00000196498
0	8	23536206	23540402	-1 ENSG00000167034
0	8	23536206	23540402	-1 ENSG00000167034
0	2	25960557	26101385	-1 ENSG00000143970
0	5	58264865	59817947	-1 ENSG00000113448
0	5	67511548	67597649	1 ENSG00000145675
0	5	67511548	67597649	1 ENSG00000145675
0	5	67511548	67597649	1 ENSG00000145675
0	2	225629807	225907330	-1 ENSG00000135905
0	5	54720682	54830878	-1 ENSG0000067113
0	5	54720682	54830878	-1 ENSG0000067113
0	5	54720682	54830878	-1 ENSG0000067113
0	13	48877887	49056122	1 ENSG00000139687
0	16	72816784	73082274	-1 ENSG00000140836
0	10	89622870	89731687	1 ENSG00000171862
0	10	89622870	89731687	1 ENSG00000171862
0	10	89622870	89731687	1 ENSG00000171862
0	3	176738542	176915048	-1 ENSG00000177565
0	13	48877887	49056122	1 ENSG00000139687
0	13	48877887	49056122	1 ENSG00000139687
0	13	48877887	49056122	1 ENSG00000139687
0	11	108175402	108186638	1 ENSG00000149311
---	----	-----------	-----------	--------------------
0	3	78646390	79816965	-1 ENSG00000169855
0	3	78646390	79816965	-1 ENSG00000169855
0	13	32889611	32973347	1 ENSG00000139618
0	3	77089294	77699114	1 ENSG00000185008
0	3	77089294	77699114	1 ENSG00000185008
0	3	77089294	77699114	1 ENSG00000185008
0	3	72423744	72911065	-1 ENSG00000163602
0	17	37617739	37690800	1 ENSG00000167258
0	6	76311225	76427997	1 ENSG00000112701
0	3	72798428	72911065	-1 ENSG00000144736
0	18	45359466	45457517	-1 ENSG00000175387
0	18	45359466	45457517	-1 ENSG00000175387
0	Х	44732423	44971847	1 ENSG00000147050
0	18	48556583	48611415	1 ENSG00000141646
0	18	48556583	48611415	1 ENSG00000141646
0	18	48556583	48611415	1 ENSG00000141646
0	17	15933408	16118874	-1 ENSG00000141027
0	1	27022522	27108601	1 ENSG00000117713
0	3	176738542	176915048	-1 ENSG00000177565
0	3	176738542	176915048	-1 ENSG00000177565
0	3	176738542	176915048	-1 ENSG00000177565
0	3	41236328	41301587	1 ENSG00000153922
0	17	7565257	7590856	-1 ENSG00000141510
1	17	7565257	7590856	-1 ENSG00000141510
0	17	7565257	7590856	-1 ENSG00000141510
0	11	113668598	113746256	-1 ENSG0000048028
0	11	113668598	113746256	-1 ENSG0000048028
0	11	113668598	113746256	-1 ENSG0000048028
0	11	113931288	114121397	1 ENSG00000109906
0	11	113931288	114121397	1 ENSG00000109906
0	18	45359466	45457517	-1 ENSG00000175387
0	16	72816784	73082274	-1 ENSG00000140836
0	16	72816784	73082274	-1 ENSG00000140836
0	16	72816784	73082274	-1 ENSG00000140836
0	Х	70459474	70474996	-1 ENSG00000147130
0	Х	70459474	70474996	-1 ENSG00000147130
0	Х	70459474	70474996	-1 ENSG00000147130
0	18	48556583	48611415	1 ENSG00000141646
0	Х	70459474	70474996	-1 ENSG00000147130
0	6	87862551	87973914	1 ENSG00000188994

0	6	87862551	87973914	1 ENSG00000188994
~	~	0-004	07070044	4

0 6 87862551 87973914 1 ENSG00000188994

gene	source	chr		start	end	strand	n_rearr_icgc
ERG	cgp		21	39751949	40033704	-1	56
PTEN	cgp		10	89622870	89731687	1	28
TP53	cgp		17	7565257	7590856	-1	. 19
CDKN1B	cgp		12	12867992	12875305	1	. 15
PDE4D	cgp		5	58264865	59817947	-1	13
ROBO1	cgp		3	78646390	79816965	-1	. 11
ROBO2	cgp		3	77089294	77699114	1	. 11
ZNF292	cgp		6	87862551	87973914	1	. 11
FOXA1	cgp		14	38059189	38064239	-1	. 10
PPAP2A	cgp		5	54720682	54830878	-1	. 10
ETV3	cgp		1	157090983	157108266	-1	. 9
ADAM28	cgp		8	24151580	24212726	1	. 8
IL6ST	cgp		5	55230925	55290821	-1	. 8
MYST3	cgp		8	41799567	41909505	-1	. 8
PPP2R2A	cgp		8	26149007	26230196	1	. 8
AR	cgp	Х		66763874	66950461	1	. 7
APC	cgp		5	112043195	112203279	1	. 6
ASH1L	cgp		1	155305052	155532324	-1	. 6
DLC1	cgp		8	13162116	13372429	-1	6
NCOR2	cgp		12	124808957	125052010	-1	6
CDH12	cgp		5	21750777	22853731	-1	. 5
KMT2C	cgp		7	151832007	152133628	-1	5
SENP6	cgp		6	76311225	76427997	1	5
ANTXR2	cgp		4	80898662	80994477	-1	. 4
ARID4B	cgp		1	235330210	235490802	-1	4
ASXL2	cgp		2	25960557	26101385	-1	. 4
DOCK10	cgp		2	225629807	225907330	-1	. 4
RB1	cgp		13	48877887	49056122	1	. 4
ZFHX3	cgp		16	72816784	73082274	-1	. 4
TBL1XR1	cgp		3	176738542	176915048	-1	3
ATM	cgp		11	108175402	108186638	1	2
BRCA2	cgp		13	32889611	32973347	1	2
CDK12	cgp		17	37617739	37690800	1	2
KDM6A	cgp	Х		44732423	44971847	1	2
NCOR1	cgp		17	15933408	16118874	-1	2
ARID1A	cgp		1	27022522	27108601	1	. 1
CTNNB1	cgp		3	41236328	41301587	1	1
SMAD2	cgp		18	45359466	45457517	-1	. 1
SMAD4	cgp		18	48556583	48611415	1	1
ZMYM3	cgp	Х		70459474	70474996	-1	1

rearr_icgc_su ensg	homodel_	icg(multiple_	_hit_		multiple_hit_	multiple_hit_																																																																																																																																																																																																																		
PD9168a <tm ensg000001<="" td=""><td>1</td><td>0</td><td>1</td><td>PD13412a</td><td>1</td><td>PD13412a</td></tm>	1	0	1	PD13412a	1	PD13412a																																																																																																																																																																																																																		
PD11331a <sn ensg000001<="" td=""><td>PD12808a</td><td>,PD</td><td>5</td><td>PD12844a,PD</td><td>5</td><td>PD13392a,PD</td></sn>	PD12808a	,PD	5	PD12844a,PD	5	PD13392a,PD																																																																																																																																																																																																																		
PD11329a <sn ensg0000014<="" td=""><td>PD11329d</td><td>l</td><td>1</td><td>PD14728a</td><td>12</td><td>PD12818a,PD</td></sn>	PD11329d	l	1	PD14728a	12	PD12818a,PD																																																																																																																																																																																																																		
PD11332a <sn ensg000001<="" td=""><td></td><td>0</td><td>1</td><td>PD12809a</td><td>0</td><td></td></sn>		0	1	PD12809a	0																																																																																																																																																																																																																			
PD11330a <sn ensg000001<="" td=""><td>PD14734a</td><td>,PD</td><td>1</td><td>PD14728a</td><td>1</td><td>PD14728a</td></sn>	PD14734a	,PD	1	PD14728a	1	PD14728a																																																																																																																																																																																																																		
PD11332a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11328a <tr: ensg0000018<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr:>		0	0	-	0																																																																																																																																																																																																																			
PD12817a <sn ensg0000018<="" td=""><td>PD14728a</td><td>,PD</td><td>0</td><td>-</td><td>0</td><td></td></sn>	PD14728a	,PD	0	-	0																																																																																																																																																																																																																			
PD11328a <ta ensg000012<="" td=""><td></td><td>0</td><td>4</td><td>PD12337a,PD</td><td>0</td><td></td></ta>		0	4	PD12337a,PD	0																																																																																																																																																																																																																			
PD11332a <tr ensg000000<="" td=""><td>PD14734a</td><td>l</td><td>0</td><td>-</td><td>0</td><td></td></tr> <tr><td>PD12337a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD12829a<sn ensg0000004<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11332a</td></sn></td></tr> <tr><td>PD12817a<sn ensg000001<="" td=""><td>PD14734a</td><td>,PD</td><td>0</td><td>-</td><td>1</td><td>PD14726a</td></sn></td></tr> <tr><td>PD12808a<sn ensg000008<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD12842a</td></sn></td></tr> <tr><td>PD12829a<sn ensg000002<="" td=""><td>PD13412c</td><td>,PD</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD12845a<cc ensg000001<="" td=""><td></td><td>0</td><td>2</td><td>PD12337a,PD</td><td>0</td><td></td></cc></td></tr> <tr><td>PD12809a<sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>2</td><td>PD14728a,PD</td></sn></td></tr> <tr><td>PD11328a<tr; ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;></td></tr> <tr><td>PD12836a<sn ensg000001<="" td=""><td>PD13408a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD13388a</td></sn></td></tr> <tr><td>PD14728a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD11328a<cc ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></cc></td></tr> <tr><td>PD11328a<cc ensg000000<="" td=""><td>PD13412a</td><td>l</td><td>0</td><td>-</td><td>0</td><td></td></cc></td></tr> <tr><td>PD12838a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11329a</td></sn></td></tr> <tr><td>PD13390a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD12836a<sn ensg000000<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD11331a<sn ensg0000014<="" td=""><td>PD14706a</td><td>l</td><td>1</td><td>PD11331a</td><td>1</td><td>PD11331a</td></sn></td></tr> <tr><td>PD11332a<sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD11335a<sn ensg0000013<="" td=""><td>PD12834a</td><td>,PD</td><td>1</td><td>PD11335a</td><td>2</td><td>PD11329a,PD</td></sn></td></tr> <tr><td>PD11330a<tr; ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;></td></tr> <tr><td>PD13387a<1k ENSG000001</td><td>PD14717a</td><td>l</td><td>0</td><td>-</td><td>0</td><td></td></tr> <tr><td>PD9169a<inv_ensg0000014< td=""><td>!</td><td>0</td><td>1</td><td>PD13401a</td><td>1</td><td>PD12843a</td></inv_ensg0000014<></td></tr> <tr><td>PD11335a<sn ensg0000013<="" td=""><td>PD14731a</td><td>,PD</td><td>0</td><td>-</td><td>2</td><td>PD12829a,PD</td></sn></td></tr> <tr><td>PD14722a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD11328a<sn ensg0000014<="" td=""><td>!</td><td>0</td><td>1</td><td>PD11328a</td><td>0</td><td></td></sn></td></tr> <tr><td>PD13380a<sn ensg0000014<="" td=""><td>PD14725a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD12838a</td></sn></td></tr> <tr><td>PD14728a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD11328a<ta ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></ta></td></tr> <tr><td>PD14706a<sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr> <tr><td>PD14727a<in ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11335a</td></in></td></tr> <tr><td>PD11333a<sn ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn></td></tr>	PD14734a	l	0	-	0		PD12337a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD12829a <sn ensg0000004<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11332a</td></sn>	!	0	0	-	1	PD11332a	PD12817a <sn ensg000001<="" td=""><td>PD14734a</td><td>,PD</td><td>0</td><td>-</td><td>1</td><td>PD14726a</td></sn>	PD14734a	,PD	0	-	1	PD14726a	PD12808a <sn ensg000008<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD12842a</td></sn>		0	0	-	1	PD12842a	PD12829a <sn ensg000002<="" td=""><td>PD13412c</td><td>,PD</td><td>0</td><td>-</td><td>0</td><td></td></sn>	PD13412c	,PD	0	-	0		PD12845a <cc ensg000001<="" td=""><td></td><td>0</td><td>2</td><td>PD12337a,PD</td><td>0</td><td></td></cc>		0	2	PD12337a,PD	0		PD12809a <sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>2</td><td>PD14728a,PD</td></sn>		0	0	-	2	PD14728a,PD	PD11328a <tr; ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;>		0	0	-	0		PD12836a <sn ensg000001<="" td=""><td>PD13408a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD13388a</td></sn>	PD13408a	l	0	-	1	PD13388a	PD14728a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD11328a <cc ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></cc>		0	0	-	0		PD11328a <cc ensg000000<="" td=""><td>PD13412a</td><td>l</td><td>0</td><td>-</td><td>0</td><td></td></cc>	PD13412a	l	0	-	0		PD12838a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11329a</td></sn>		0	0	-	1	PD11329a	PD13390a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD12836a <sn ensg000000<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD11331a <sn ensg0000014<="" td=""><td>PD14706a</td><td>l</td><td>1</td><td>PD11331a</td><td>1</td><td>PD11331a</td></sn>	PD14706a	l	1	PD11331a	1	PD11331a	PD11332a <sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD11335a <sn ensg0000013<="" td=""><td>PD12834a</td><td>,PD</td><td>1</td><td>PD11335a</td><td>2</td><td>PD11329a,PD</td></sn>	PD12834a	,PD	1	PD11335a	2	PD11329a,PD	PD11330a <tr; ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;>	!	0	0	-	0		PD13387a<1k ENSG000001	PD14717a	l	0	-	0		PD9169a <inv_ensg0000014< td=""><td>!</td><td>0</td><td>1</td><td>PD13401a</td><td>1</td><td>PD12843a</td></inv_ensg0000014<>	!	0	1	PD13401a	1	PD12843a	PD11335a <sn ensg0000013<="" td=""><td>PD14731a</td><td>,PD</td><td>0</td><td>-</td><td>2</td><td>PD12829a,PD</td></sn>	PD14731a	,PD	0	-	2	PD12829a,PD	PD14722a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD11328a <sn ensg0000014<="" td=""><td>!</td><td>0</td><td>1</td><td>PD11328a</td><td>0</td><td></td></sn>	!	0	1	PD11328a	0		PD13380a <sn ensg0000014<="" td=""><td>PD14725a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD12838a</td></sn>	PD14725a	l	0	-	1	PD12838a	PD14728a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD11328a <ta ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></ta>		0	0	-	0		PD14706a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0		PD14727a <in ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11335a</td></in>	!	0	0	-	1	PD11335a	PD11333a <sn ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>	!	0	0	-	0	
PD14734a	l	0	-	0																																																																																																																																																																																																																				
PD12337a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD12829a <sn ensg0000004<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11332a</td></sn>	!	0	0	-	1	PD11332a																																																																																																																																																																																																																		
PD12817a <sn ensg000001<="" td=""><td>PD14734a</td><td>,PD</td><td>0</td><td>-</td><td>1</td><td>PD14726a</td></sn>	PD14734a	,PD	0	-	1	PD14726a																																																																																																																																																																																																																		
PD12808a <sn ensg000008<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD12842a</td></sn>		0	0	-	1	PD12842a																																																																																																																																																																																																																		
PD12829a <sn ensg000002<="" td=""><td>PD13412c</td><td>,PD</td><td>0</td><td>-</td><td>0</td><td></td></sn>	PD13412c	,PD	0	-	0																																																																																																																																																																																																																			
PD12845a <cc ensg000001<="" td=""><td></td><td>0</td><td>2</td><td>PD12337a,PD</td><td>0</td><td></td></cc>		0	2	PD12337a,PD	0																																																																																																																																																																																																																			
PD12809a <sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>2</td><td>PD14728a,PD</td></sn>		0	0	-	2	PD14728a,PD																																																																																																																																																																																																																		
PD11328a <tr; ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;>		0	0	-	0																																																																																																																																																																																																																			
PD12836a <sn ensg000001<="" td=""><td>PD13408a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD13388a</td></sn>	PD13408a	l	0	-	1	PD13388a																																																																																																																																																																																																																		
PD14728a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11328a <cc ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></cc>		0	0	-	0																																																																																																																																																																																																																			
PD11328a <cc ensg000000<="" td=""><td>PD13412a</td><td>l</td><td>0</td><td>-</td><td>0</td><td></td></cc>	PD13412a	l	0	-	0																																																																																																																																																																																																																			
PD12838a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11329a</td></sn>		0	0	-	1	PD11329a																																																																																																																																																																																																																		
PD13390a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD12836a <sn ensg000000<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11331a <sn ensg0000014<="" td=""><td>PD14706a</td><td>l</td><td>1</td><td>PD11331a</td><td>1</td><td>PD11331a</td></sn>	PD14706a	l	1	PD11331a	1	PD11331a																																																																																																																																																																																																																		
PD11332a <sn ensg0000013<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11335a <sn ensg0000013<="" td=""><td>PD12834a</td><td>,PD</td><td>1</td><td>PD11335a</td><td>2</td><td>PD11329a,PD</td></sn>	PD12834a	,PD	1	PD11335a	2	PD11329a,PD																																																																																																																																																																																																																		
PD11330a <tr; ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></tr;>	!	0	0	-	0																																																																																																																																																																																																																			
PD13387a<1k ENSG000001	PD14717a	l	0	-	0																																																																																																																																																																																																																			
PD9169a <inv_ensg0000014< td=""><td>!</td><td>0</td><td>1</td><td>PD13401a</td><td>1</td><td>PD12843a</td></inv_ensg0000014<>	!	0	1	PD13401a	1	PD12843a																																																																																																																																																																																																																		
PD11335a <sn ensg0000013<="" td=""><td>PD14731a</td><td>,PD</td><td>0</td><td>-</td><td>2</td><td>PD12829a,PD</td></sn>	PD14731a	,PD	0	-	2	PD12829a,PD																																																																																																																																																																																																																		
PD14722a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11328a <sn ensg0000014<="" td=""><td>!</td><td>0</td><td>1</td><td>PD11328a</td><td>0</td><td></td></sn>	!	0	1	PD11328a	0																																																																																																																																																																																																																			
PD13380a <sn ensg0000014<="" td=""><td>PD14725a</td><td>l</td><td>0</td><td>-</td><td>1</td><td>PD12838a</td></sn>	PD14725a	l	0	-	1	PD12838a																																																																																																																																																																																																																		
PD14728a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD11328a <ta ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></ta>		0	0	-	0																																																																																																																																																																																																																			
PD14706a <sn ensg000001<="" td=""><td></td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>		0	0	-	0																																																																																																																																																																																																																			
PD14727a <in ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>1</td><td>PD11335a</td></in>	!	0	0	-	1	PD11335a																																																																																																																																																																																																																		
PD11333a <sn ensg0000014<="" td=""><td>!</td><td>0</td><td>0</td><td>-</td><td>0</td><td></td></sn>	!	0	0	-	0																																																																																																																																																																																																																			

```
multiple_hit_multiple_hit_all_summary
 1 PD13412a
 7 PD12844a, PD13387a, PD12840a, PD14718a, PD11334a, PD13392a, PD14724a
12 PD14728a, PD12818a, PD12806a, PD11331a, PD9168a, PD14730a, PD14727a, PD1133
 1 PD12809a
 1 PD14728a
 0
 0
 0
 4 PD12337a, PD13406a, PD14726a, PD11328a
 0
 0
 1 PD11332a
 1 PD14726a
 1 PD12842a
 0
 2 PD12337a, PD11334a
 2 PD14728a, PD14713a
 0
 1 PD13388a
 0
 0
 0
 1 PD11329a
 0
 0
 1 PD11331a
 0
 2 PD11335a, PD11329a
 0
 0
 2 PD13401a, PD12843a
 2 PD12829a, PD14722a
 0
 1 PD11328a
 1 PD12838a
 0
 0
 0
 1 PD11335a
 0
```

3a, PD11334a, PD14713a, PD12845a, PD11332a

GENE	SYN	MIS	NON	SPLICE	INDEL	dNdS_mis	dNdS_NON
TP53	0	105	10	6	33	147.432737	253.692241
SPOP	0	94	0	0	3	141.013749	0
PTEN	0	16	7	6	17	25.4268052	136.30721
FOXA1	3	30	0	0	29	9.81109971	0
CDKN1B	1	1	4	0	9	1.6831457	107.081529
MLL2	5	24	12	1	23	2.13464222	17.1632806
APC	2	4	14	0	14	0.70166849	26.8214594
CDK12	4	10	4	1	13	1.9532142	10.1645074
MLL3	13	39	16	0	15	1.4316258	7.27393243
KDM6A	1	6	2	3	8	2.59995615	9.88863037
ZFHX3	14	15	7	1	15	0.6685532	5.64165771
ATM	2	22	5	0	10	3.56247943	9.55277643
RB1	1	3	2	2	5	1.51157057	9.86031155
CHD1	2	7	3	3	5	1.52378026	7.19824641
ZMYM3	0	5	1	1	6	3.43593539	11.8402402
TBL1XR1	0	1	0	2	4	1.12232122	0
AR	6	34	0	0	1	5.90940047	0
ARID1A	1	9	3	0	6	2.64331568	16.3404042
BRCA2	4	7	1	0	13	0.80289319	1.69629446
IL6ST	0	4	2	1	3	3.15735344	20.6534624
CTNNB1	1	22	0	0	0	10.7914381	0
CASZ1	1	6	2	0	9	1.81674498	19.3498255
RNF43	1	4	3	0	2	2.07003675	22.399243
PIK3CA	3	23	0	0	1	5.71483253	0
SMAD2	0	3	1	1	1	4.33979878	14.7113888
FOXP1	2	1	2	1	3	0.39154464	9.62607296
PIK3R1	0	2	0	2	2	1.50442841	0
TBX3	0	9	0	0	3	5.0925344	0
BRAF	0	11	0	0	1	8.04169209	0
IDH1	0	9	0	0	0	10.9808339	0
HRAS	0	6	0	0	0	14.8899243	0
CNOT3	1	12	1	0	0	5.3551647	8.93810103
NDST4	1	13	0	0	1	4.71827098	0
RPL11	0	6	0	0	1	18.3361561	0
LCE2B	0	6	0	0	0	20.6936968	0

dNdS_SPLICE	dNdS_INDEL	pMIS	pALL	qMIS	qALL
222.714656	249.191884	0	0	0	0
0	23.90303	0	0	0	0
208.43008	126.399663	3.55E-10	0	0	0
0	195.094571	1.05E-09	2.47E-07	0	0
0	141.209958	0.12944	6.53E-06	0.16	0
4.99600593	12.979872	0.013501	3.97E-09	0.157	0
0	15.6104792	0.077096	1.13E-08	0.157	0
11.1802402	27.2814769	0.035413	0.000404	0.157	0
0	9.47480798	0.040913	1.26E-06	0.157	0
26.6982637	17.2254931	0.038754	7.88E-05	0.157	0
11.491477	12.9629448	0.062368	0.003805	0.157	0
0	9.88737324	0.001329	0.000141	0.06	0
14.1298896	15.8337048	0.086896	0.00151	0.157	0
14.2079143	8.82794742	0.06582	0.000228	0.157	0
18.6788792	13.3435247	0.032762	0.007936	0.157	0.001
38.2370089	22.9809546	0.095498	0.008221	0.157	0.001
0	3.40510979	1.39E-07	1.96E-05	0	0.003
0	8.22957819	0.027956	0.003337	0.157	0.003
0	11.9662882	0.086593	0.951295	0.157	0.003
16.6133537	9.99043049	0.029148	0.00079	0.157	0.003
0	0	7.60E-08	1.15E-05	0	0.005
0	15.9572425	0.093542	0.023145	0.188	0.013
0	7.92852346	0.057405	0.00265	0.157	0.029
0	2.8414227	6.78E-06	0.000568	0.001	0.047
34.3258381	6.43665368	0.020019	0.001868	0.157	0.068
6.61571033	13.2009916	0.072952	0.074323	0.157	0.068
36.4268504	8.32750722	0.097486	0.009524	0.157	0.072
0	12.5614972	0.003977	0.086703	0.131	0.081
0	3.90194564	0.000172	0.008109	0.01	0.277
0	0	4.39E-05	0.002694	0.003	0.347
0	0	6.01E-05	0.003482	0.004	0.383
0	0	0.000688	0.004104	0.036	0.43
0	3.52154498	0.001038	0.032659	0.05	0.617
0	16.2156234	1.61E-05	0.001172	0.026	0.679
0	0	8.49E-06	0.000686	0.017	1

region	exp_subs	exp_indels	obs_subs	obs_indels	local_t	local_t_ind
Exon_FOXA1	0.288113	0.001691	5	8	0.915694	10.03441
Exon_TP53	0.18919	0.001598	7	3	0.55651	5.325007
Exon_SPOP	0.138802	0.001392	11	0	0.700511	6.543536
Exon_PTEN	0.128824	0.001406	7	2	0.619405	5.688691
UTR3_FOXA1	0.147241	0.002362	3	5	0.915694	10.03441
Exonflanks_ARSD	0.157829	0.00236	8	0	0.526025	2.565645
ENSG00000245532 (NEAT:	3.890444	0.049559	9	6	0.604275	5.619608
Exon_CDK12	0.539239	0.005222	0	3	0.578958	7.817554
ENSG00000182021	2.401588	0.03194	13	0	0.893604	22.28641
ENSG00000229178	0.53852	0.005144	1	3	0.866064	6.453148
Exon_TBX3	0.403789	0.002589	0	2	0.953099	6.451043
Exon_CDKN1B	0.117888	0.000858	3	0	0.647826	7.143755
ENSG00000258414	2.100838	0.032824	3	5	0.982415	10.03441
UTR3_PDE4DIP	0.900626	0.015101	5	2	0.682246	14.82315
ENSG00000264734	1.706188	0.023407	9	1	1.042655	9.322698
ENSG00000264698	0.009584	0.000157	2	0	1.0041	7.806753
ENSG00000238385	0.011969	0.0002	2	0	0.930626	10.59962
ENSG00000235887	0.225929	0.002884	2	2	1.295134	33.94427
ENSG00000261466	1.088951	0.013304	11	0	1.984319	44.83325
ENSG00000232527	3.988412	0.050662	12	5	1.246748	31.93861
ENSG00000249388	3.531467	0.044789	6	4	0.783395	8.080765
Exon_EIF1AX	0.049635	0.000505	2	0	0.554568	2.488115
Exon_DDX6	0.160903	0.001684	1	1	0.67603	6.913211
Exon_TPM4	0.191569	0.001464	1	1	0.615317	5.897858
Exon_MDM2	0.166635	0.001914	3	0	0.814391	6.131522
UTR5_CREBRF	0.018882	0.000345	1	1	0.779091	5.996343
Exon_TFF3	0.072721	0.000654	4	0	0.599197	4.369566
UTR3_POM121L7	0.089106	0.001246	4	0	0.694481	10.1365
UTR3_PRRC2C	0.169462	0.002724	4	1	1.051891	9.221754
Promoter_STIL	0.189626	0.002708	2	1	0.621343	6.540899
Promoter_FOXP1	0.547081	0.007785	0	3	0.784195	6.510009
Promoter_FOXA2	0.121902	0.001576	4	0	1.051928	7.740274

pval_subs	pval_indels	pval_both	qval_subs	qval_indels	qval_both	exclude_	gecv_predict
0.000319	6.05E-05	3.62E-07	0.537846	0.044211	0.001833	TRUE	0.314365
8.83E-07	0.000177	3.68E-09	0.005959	0.044211	2.49E-05	TRUE	0.148177
1.07E-11	1	2.80E-10	2.16E-07	1	4.80E-06	TRUE	0.124167
8.00E-08	0.00023	4.74E-10	0.00081	0.044211	4.80E-06	TRUE	0.106928
0.00113	0.000144	2.70E-06	1	0.029464	0.026358	TRUE	0.156821
2.10E-08	1	3.92E-07	0.000424	1	0.00792	FALSE	0.124463
0.070491	0.000405	0.000327	1	0.005583	0.035152	FALSE	2.400613
1	0.000351	0.003142	1	0.044211	0.299535	TRUE	0.431183
0.00059	1	0.00498	0.901242	1	0.036212	FALSE	1.840881
0.394703	0.000256	0.00103	1	0.005583	0.035152	FALSE	0.404354
1	0.000321	0.002901	1	0.044211	0.299535	TRUE	0.456058
0.000885	1	0.007109	0.716933	1	0.390017	TRUE	0.100452
0.340483	0.000383	0.001298	1	0.005583	0.035292	FALSE	1.72122
0.011521	0.000538	8.05E-05	1	0.029464	0.1519	TRUE	0.815375
0.001956	0.000563	1.62E-05	1	0.005583	0.034651	FALSE	1.462461
5.80E-05	1	0.000624	0.310037	1	0.035152	FALSE	0.007981
9.03E-05	1	0.000931	0.321596	1	0.035152	FALSE	0.009433
0.026002	0.000249	8.38E-05	1	0.005583	0.034859	FALSE	0.234011
1.13E-05	1	0.00014	0.121131	1	0.034859	FALSE	1.890893
0.019598	0.000428	0.000106	1	0.005583	0.034859	FALSE	3.983905
0.199386	0.000441	0.000909	1	0.005583	0.035152	FALSE	2.492293
0.001966	1	0.014217	1	1	0.763467	TRUE	0.038806
0.141141	0.000416	0.000631	1	0.044211	0.299535	TRUE	0.140721
0.164168	0.000394	0.000688	1	0.044211	0.299535	TRUE	0.15841
0.00225	1	0.01597	1	1	0.850812	TRUE	0.165587
0.01825	1.06E-05	3.17E-06	1	0.004252	0.030395	FALSE	0.017694
1.26E-05	1	0.000155	0.063923	1	0.258294	FALSE	0.059245
1.37E-05	1	0.000167	0.26772	1	0.181396	FALSE	0.081361
0.000152	0.000438	1.16E-06	1	0.029464	0.022699	FALSE	0.198432
0.024531	0.000593	0.000176	1	0.054112	0.402543	TRUE	0.169028
1	0.00049	0.004223	1	0.054112	0.402543	TRUE	0.546891
0.000115	1	0.001162	0.681941	1	0.402543	TRUE	0.147135

cv_predict(pval_subs_	pval_indels	pval_both_	qval_subs_	qval_indels	qval_both_	qval_both_
0.015625	0.000255	1.84E-16	0	0.420988	3.73E-12	0	0
0.011529	6.03E-08	8.19E-07	1.56E-12	0.000407	0.00829	1.58E-08	5.58E-10
0.010704	3.60E-13	1	1.07E-11	7.27E-09	1	7.19E-08	2.54E-09
0.010336	7.18E-09	8.19E-05	1.71E-11	7.26E-05	0.414184	8.67E-08	3.06E-09
0.024018	0.001191	2.01E-10	7.20E-12	1	3.92E-06	1.40E-07	5.13E-09
0.014794	1.63E-09	1	3.46E-08	3.29E-05	1	0.000698	0.000673
0.36631	0.0029	1.54E-05	8.02E-07	1	0.084275	0.008568	0.008568
0.042939	1	3.98E-05	0.000443	1	0.268395	1	0.063262
0.446832	2.53E-06	1	3.51E-05	0.027004	1	0.18752	0.18752
0.039252	0.328037	1.58E-05	6.82E-05	1	0.084275	0.242755	0.242755
0.019813	1	0.000297	0.002709	1	0.750953	1	0.32233
0.006812	0.000429	1	0.003758	0.511003	1	1	0.383354
0.287283	0.252791	4.68E-05	0.000146	1	0.166643	0.390034	0.390034
0.199246	0.006834	0.019098	0.001298	1	1	1	0.462711
0.199359	0.000118	0.177736	0.000247	0.252156	1	0.527597	0.527597
0.00126	3.43E-05	1	0.000387	0.135176	1	0.63947	0.63947
0.001791	4.79E-05	1	0.000525	0.135176	1	0.63947	0.63947
0.063045	0.024838	0.002231	0.000599	1	1	0.63947	0.63947
0.441212	5.06E-05	1	0.000551	0.135176	1	0.63947	0.63947
1.025565	0.004631	0.009469	0.000484	1	1	0.63947	0.63947
0.363764	0.057831	0.001146	0.000704	1	1	0.683568	0.683568
0.003135	0.001081	1	0.008465	0.948785	1	1	0.755504
0.013206	0.127053	0.013072	0.012291	1	1	1	0.819501
0.010881	0.141278	0.01079	0.011412	1	1	1	0.819501
0.014403	0.001713	1	0.012625	1	1	1	0.819501
0.002554	0.017234	0.000453	9.96E-05	1	0.23587	0.954002	0.911757
0.004488	3.46E-06	1	4.69E-05	0.017491	1	0.189952	0.916242
0.012737	7.66E-06	1	9.79E-05	0.149348	1	0.63621	0.919425
0.026499	0.000218	0.026105	7.44E-05	0.808592	1	0.63621	0.919425
0.023011	0.019765	0.022293	0.003845	1	1	1	0.952062
0.066035	1	0.000461	0.004	1	1	1	0.952062
0.014382	0.000206	1	0.001954	1	1	1	0.952062

source Noncoding_CDS Noncoding CDS Noncoding_CDS Noncoding_CDS Noncoding_UTR3 Noncoding_ExonFlanks Noncoding_ncRNA Noncoding_CDS Noncoding_ncRNA Noncoding_ncRNA Noncoding_CDS Noncoding_CDS Noncoding_ncRNA Noncoding_UTR3 Noncoding_ncRNA Noncoding_ncRNA Noncoding_ncRNA Noncoding_ncRNA Noncoding_ncRNA Noncoding_ncRNA Noncoding_ncRNA Noncoding_CDS Noncoding CDS Noncoding CDS Noncoding_CDS Noncoding_UTR5 Noncoding_CDS Noncoding_UTR3 Noncoding_UTR3 Noncoding_Promoters Noncoding_Promoters Noncoding_Promoters

SUPPLEMENTARY TABLE 2

previous evidence	gene	mutation_type	prior_evidence	evidence_in_our_study	tumor suppressor / oncogene?
low	ADAM28	SV, CNA	1 biological evidence	SVs and CNA in ETS+	tumor suppressor
low	ANTXR2	SV,SNV/indel	none	clinical correlation	tumor suppressor
low	ASH1L	SV,SNV/indel	2	truncating mutations, SVs in ETS-	tumor suppressor
low	CDH12	SV	none	clinical correlation	tumor suppressor
low	FOXO1	CNA	3 biological evidence	CNA in ETS-	tumor suppressor
low	IL6ST	SV	4 biological evidence	dN/dS, SVs and CNA in ETS+, clinical of	tumor suppressor
low	LCE2B	SNV/indel	none	dN/dS (missense)	tumor suppressor
low	MAP3K1	SV, CNA	none	SVs, CNA in ETS+	tumor suppressor
low	MYST3	SV	2	SVs in ETS-, RNA expression	tumor suppressor
low	NCOA7	SV	none	SVs in ETS-	tumor suppressor
low	NDST4	SNV/indel	none	dN/dS (missense)	oncogene
low	NEAT1	Non-coding	5 biological evidence	non-coding	oncogene
low	PDE4D	SV	6 SNP data	SVs and CNA in ETS+	tumor suppressor
low	PPAP2A	SV	6 SNP data	SVs and CNA in ETS+	tumor suppressor
low	PPP2R2A	SV	7 biological evidence	SVs and CNAs in ETS+	tumor suppressor
low	ROBO1	SV	8 biological evidence	SVs in ETS+	tumor suppressor
low	ROBO2	SV	2	SVs in ETS+	tumor suppressor
low	RPL11	SNV/indel	2	dN/dS (missense)	oncogene
low	SENP6	SV	9 biological evidence	enriched SVs, RNA expression	tumor suppressor
low	TBL1XR1	SNV/indel,SV	10 known AR co-regulator, biol	cdN/dS	tumor suppressor
low	USP28	SV, CNA, SNV/indel	none	SVs, CNA, SNV/indel	tumor suppressor
low	ZNF292	SV,SNV/indel, CNA	2	enriched SVs, homozygous deletions, the	r tumor suppressor
medium	ARID1A	SNV/indel	11	dN/dS	tumor suppressor
medium	ASXL2	SNV/indel	TCGA, COSMIC and SU2C	Not identified in this study	tumor suppressor
medium	CASZ1	SNV/indel	COSMIC, TCGA and SU2C	dN/dS	tumor suppressor
medium	CNOT3	SNV/indel	12 mutated in leukemia	dN/dS (missense)	oncogene
medium	DOCK10	SNV/indel,SV	TCGA, COSMICand SUC2C	Not identified in this study	tumor suppressor
medium	LRP1B	SV, CNA	6	SVs and CNA in ETS-	tumor suppressor
medium	PIK3R1	SNV/indel	13	dN/dS	tumor suppressor
medium	RGMB	CNA	14	CNA in ETS-	tumor suppressor
madium	SWVDV	SNI//indel	15	Not identified in this study	tumor euroraceor

mealam			16	ทั้งเกินอาแกอน กา แก่อ อเนนิย์	lumor suppressor
medium medium high high high high	TBX3 ZMYM3 AKT1 APC AR ARID4B	SNV/indel SNV/indel SV,SNV/indel SV,SNV/indel SV,SNV/indel	known breast cancer gene COSMIC SU2C known prostate cancer gene known prostate cancer gene known prostate cancer gene TCGA	dN/dS dN/dS Not identified in this study dN/dS, enriched in metastases dN/dS, enriched in metastases	tumor suppressor tumor suppressor
high	ATM	SNV/indel	17 18	dN/dS	
high	BRAF	SNV/indel	19	dN/dS (missense)	
high	BRCA2	SNV/indel,SV, CNA	17 18	dN/dS, enriched in metastases, CNA in	
high high high high high high high high	CDK12 CDKN1B CHD1 CSMD3 CTNNB1 DLC1 ERG ETV3 FOXA1 FOXP1 HRAS IDH1 KDM6A KMT2C KMT2D MLL2 MLL3 MTUS1 NCOR1 NCOR1 NCOR2	SNV/indel SV,SNV/indel SV SV SNV/indel SNV/indel SV SV, CNAs, SNV/indel SV,SNV/indel, non-coding SV SNV/indel, non-coding SV SNV/indel	known prostate cancer gene known tumor supressor gene known prostate cancer gene 20 known prostate cancer gene known prostate cancer gene 16 known prostate cancer gene known prostate cancer gene known cancer gene known prostate cancer gene	dN/dS, enriched in metastases dN/dS dN/dS, SVs and CNA in ETS- SVs in ETS- dN/dS, enriched in metastases clinical correlation enriched SVs and CNA SVs, CNAs, SNS/indel in ETS- dN/dS, non-coding dN/dS, sVs in ETS+ dN/dS (missense) dN/dS (missense) dN/dS (missense) dN/dS enriched in metastases enriched in metastases enriched in metastases dN/dS clinical correlation known prostate cancer gene known AR regulator	tumor supressor oncogene
high high high	NKX3-1 PIK3CA PIK3CB	SV SNV/indel SNV/indel	known prostate cancer gene known prostate cancer gene known prostate cancer gene	enriched SVs dN/dS enriched in metastases	

high	PTEN	SV,SNV/indel	known prostate cancer gene	dN/dS, CNA in ETS+
high	RB1	SNV/indel	known prostate cancer gene	dN/dS, enriched in metastases
high	RNF43	SNV/indel	18	dN/dS
high	RYBP	SV	known prostate cancer gene	SVs in ETS+
high	SHQ1	SV	known prostate cancer gene	SVs in ETS+
high	SMAD2	SNV/indel	known cancer gene	dN/dS
high	SPOP	SNV/indel	known prostate cancer gene	dN/dS, clinical correlation
high	TP53	SNV/indel,SV	known prostate cancer gene	dN/dS, enriched in metastases, SVs in ETS+
high	ZBTB16	SV	reported SVs in 25808865	SVs
high	ZFHX3	SNV/indel,SV	known prostate cancer gene	dN/dS, enriched in metastases

Rudnicka, C. et al. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migratic 1 Baca, S.C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666-77 (2013). 2

- Zhang, H. et al. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res 71, 3257-67 (2011). 3 Malinowska, K. et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr 4 Chakravarty, D. et al. The oestrogen receptor alpha-regulated IncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5, 5383 (20 5 6 FitzGerald, L.M. et al. Identification of a prostate cancer susceptibility gene on chromosome 5p13g12 associated with risk of both familial and spor Zhao, W., Cao, L., Zeng, S., Qin, H. & Men, T. Upregulation of miR-556-5p promoted prostate cancer cell proliferation by suppressing PPP2R2A e 7 8 Parray, A. et al. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African Kaikkonen, S. et al. SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates ger 9 Daniels, G. et al. TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth. Endocr 10 11 Jones, S. et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 33, 100-3 (2012). 12 Collart, M.A., Kassem, S. & Villanyi, Z. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Hist 13 Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176-87 (2014). 14
- Burkhardt, L. et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res 73, 2795-805 (2013).
- Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269-73 (2011). 15
- 16 Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239-43 (2012).
- 17 Mateo, J. et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med 373, 1697-708 (2015).
- Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215-28 (2015). 18
- Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11-22 (2010). 19
- Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214-20 (2011). 20

on in human prostate cancer. Medicine (Baltimore) 95, e5085 (2016).

Relat Cancer **16**, 155-69 (2009). 114). radic disease. *Eur J Hum Genet* **17**, 368-77 (2009). expression. *Biomed Pharmacother* **75**, 142-7 (2015) -American and Caucasian prostate cancer models. *Int J Cancer* **135**, 2493-506 (2014). The responses in prostate cancer cells. *Mol Endocrinol* **23**, 292-307 (2009). *Relat Cancer* **21**, 127-42 (2014)

idine Starvation. Front Genet 8, 61 (2017).

Supplementary Table 3

Sample Name	Signature1	Signature2	Signature3	Signature5	Signature8	Signature1
PD11328a	1174	302	0	3314	2053	165
PD11329a	2456	161	0	2560	0	170
PD11330a	2294	276	0	2983	2799	368
PD11331a	1651	0	0	1320	0	0
PD11332a	1688	229	0	1767	1909	290
PD11333a	1960	0	0	1999	0	0
PD11334a	2400	0	0	2204	0	0
PD11335a	1346	0	9493	3622	0	223
PD12337a	2959	530	0	9450	0	940
PD12806a	1511	0	0	1044	0	0
PD12807a	531	113	0	1257	615	0
PD12808a	1479	0	0	776	2075	189
PD12809a	875	132	0	1954	0	0
PD12810a	562	116	0	879	1584	0
PD12811a	582	0	0	1926	733	169
PD12812a	496	132	0	1510	3715	342
PD12813a	1340	0	0	1445	0	0
PD12814a	1762	0	0	1218	0	0
PD12815a	498	0	0	1025	0	0
PD12816a	663	0	0	642	490	0
PD12817a	773	156	0	2322	0	0
PD12818a	1288	0	0	1033	0	0
PD12819a	1165	0	0	1044	0	0
PD12820a	2212	0	0	575	0	0
PD12821a	990	0	0	1497	0	0
PD12822a	909	82	0	959	0	0
PD12823a	174	0	0	368	334	47
PD12824a	837	124	0	1909	0	145
PD12825a	1384	0	0	1270	0	0
PD12826a	200	0	0	230	731	0
PD12828a	1610	0	0	1403	0	0
PD12829a	967	110	0	1622	0	0
PD12830a	1011	0	0	2358	0	0
PD12831a	1266	0	0	772	0	0
PD12832a	1470	0	0	1196	0	0
PD12834a	774	136	0	1869	0	0
PD12835a	1885	0	0	1157	0	0
PD12836a	2144	0	0	978	0	0
PD12837a	1521	0	0	1424	0	0
PD12838a	2338	0	0	977	0	0
PD12840a	783	0	0	1173	774	0
PD12841a	802	67	0	945	0	44
PD12842a	1803	0	0	1590	0	0
PD12843a	1995	444	0	4717	2255	367
PD12844a	686	194	0	3003	0	0
PD12845a	<u>4</u> 921	, J , 0	0	2034	0	0
PD13380a	401	198	1463	1098	1732	0
PD13381a	1824	.00	۱۹۵۵ ۱	1724	۲ <i>،</i> ۵2	0
PD13382a	1179	0	0	1264	0 983	0
PD13383a	591	0	0	1427	481	0

PD13384a	826	0	0	1058	0	0
PD13386a	766	0	0	986	0	0
PD13387a	1610	0	0	1124	0	0
PD13388a	2609	0	0	1510	0	0
PD13389a	1727	0	0	993	0	0
PD13390a	910	0	0	1217	0	0
PD13391a	1545	0	0	710	0	0
PD13392a	674	0	0	490	327	0
PD13393a	1193	146	0	1248	0	0
PD13394a	612	149	0	2451	0	0
PD13395a	678	0	0	1892	811	142
PD13396a	1842	0	0	828	0	0
PD13397a	114	0	0	164	133	0
PD13398a	560	0	0	816	463	0
PD13399a	1074	0	0	936	0	0
PD13400a	264	45	0	264	355	0
PD13401a	1337	0	0	762	0	0
PD13402a	594	0	0	1642	896	0
PD13404a	1486	0	0	823	0	0
PD13405a	677	88	0	1777	0	0
PD13406a	590	0	0	1313	537	0
PD13407a	588	101	845	1262	0	0
PD13408a	662	178	0	2173	728	215
PD13409a	1587	0	0	495	0	0
PD13410a	1492	0	0	667	0	0
PD13411a	1900	0	0	1698	0	0
PD13412a	1401	0	4626	587	5006	0
PD14706a	2299	0	0	648	0	0
PD14707a	1476	0	0	843	0	0
PD14708a	1395	0	0	501	0	0
PD14709a	634	0	0	1706	0	110
PD14710a	823	0	0	941	0	0
PD14711a	798	0	0	1425	0	0
PD14712a	866	0	0	847	0	0
PD14713a	1406	174	0	1471	0	185
PD14714a	1833	0	0	1519	0	0
PD14716a	1590	0	0	1113	0	0
PD14717a	1850	0	0	730	0	0
PD14718a	1011	124	953	829	0	0
PD14719a	1702	0	0	955	0	0
PD14720a	704	0	0	1912	0	151
PD14721a	2090	0	0	1698	0	0
PD14722a	1724	0	2287	912	2960	274
PD14724a	2178	0	0	53	1802	0
PD14725a	1599	0	0	916	0	0
PD14726a	833	184	0	2464	0	0
PD14727a	1790	0	0	1011	0	0
PD14728a	1706	242	0	2699	1390	282
PD14729a	2082	170	0	1473	0	0
PD14730a	1872	162	0	1261	0	0
PD14731a	1290	0	0	2977	2456	414
PD14732a	922	0	0	1088	0	0
PD14733a	480	0	0	605	417	0

2146	154	0	1409	0	0
1927	0	0	491	0	0
1597	0	0	653	0	0
524	101	0	1675	0	0
1570	0	0	1484	0	0
787	0	0	1656	677	0
1076	0	0	994	1372	157
1365	0	0	2029	0	0
695	0	0	1342	570	0
	2146 1927 1597 524 1570 787 1076 1365 695	$\begin{array}{cccc} 2146 & 154 \\ 1927 & 0 \\ 1597 & 0 \\ 524 & 101 \\ 1570 & 0 \\ 787 & 0 \\ 1076 & 0 \\ 1365 & 0 \\ 695 & 0 \\ \end{array}$	$\begin{array}{ccccccc} 2146 & 154 & 0 \\ 1927 & 0 & 0 \\ 1597 & 0 & 0 \\ 524 & 101 & 0 \\ 1570 & 0 & 0 \\ 787 & 0 & 0 \\ 1076 & 0 & 0 \\ 1365 & 0 & 0 \\ 695 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Signature1	Totalmutations
0	7008
603	5950
0	8720
524	3495
223	6106
0	3959
0	4604
1423	16107
3569	17448
0	2555
0	2516
0	4519
171	3132
0	3141
0	3410
0	6195
0	2785
0	2980
0	1523
0	1795
338	3589
0	2321
0	2209
0	2787
0	2487
122	2072
0	923
0	3015
0	2004
0	2012
0	2600
0	2099
0	2038
0	2666
0	2779
0	3042
0	3122
0	2945
0	3315
0	2730
40	1898
0	3393
0	9778
0	3883
0	6955
0	4892
0	3548
0	3426
0	2499

0	1884
0	1752
0	2734
0	4119
0	2720
0	2127
0	2255
0	1491
0	2587
0	3212
0	3523
0	2670
0	411
0	1839
229	2239
0	928
922	3021
0	3132
0	2309
0	2542
0	2440
0	2796
0	3956
0	2082
Ő	2159
583	4181
324	11944
324 430	3377
700 700	2709
188	2084
0	2004
0	2400 1764
0	1704
0	2223 1712
0	1710
0	3230 3250
0	3352
0	2703
0	2580
0	2917
0	2657
0	2767
454	4242
0	8157
0	4033
0	2515
0	3481
344	3145
0	6319
0	3725
0	3295
0	7137
0	2010
0	1502

0	3709
0	2418
0	2250
0	2300
0	3054
0	3120
0	3599
0	3394
0	2607

SampleName	Signature1	Signature2	Signature3	Signature5	Signature8	Signature13
PD11328a_clonal	917	203	0	2403	1355	116
PD11328a_early	31	9	0	124	70	9
PD11328a_late	74	29	0	255	273	15
PD11328a_subclonal	77	68	0	366	355	18
PD11329a_clonal	1329	85	0	1299	0	72
PD11329a_early	256	41	0	174	0	10
PD11329a_late	520	2	0	391	0	24
PD11329a_subclonal	306	19	0	865	0	33
PD11330a_clonal	604	70	0	758	681	88
PD11330a_early	1102	82	0	735	884	64
PD11330a_late	429	101	0	989	873	137
PD11330a_subclonal	0	3	0	0	7	9
PD11331a_clonal	469	0	0	300	0	0
PD11331a_early	791	0	0	634	0	0
PD11331a_late	205	0	0	124	0	0
PD11331a_subclonal	46	0	0	102	0	0
PD11332a_clonal	310	0	0	271	138	44
PD11332a_early	1064	80	0	901	693	76
PD11332a_late	300	115	0	501	819	135
PD11332a_subclonal	76	24	0	88	247	3
PD11333a_clonal	1626	0	0	1444	0	0
PD11333a_early	17	0	0	39	0	0
PD11333a_late	7	0	0	0	0	0
PD11333a_subclonal	99	0	0	221	0	0
PD11334a_clonal	1380	0	0	1285	0	0
PD11334a_early	12	0	0	0	0	0
PD11334a_late	7	0	0	0	0	0
PD11334a_subclonal	530	0	0	661	0	0
PD11335a_clonal	1031	0	5965	2710	0	194
PD11335a_early	47	0	102	95	0	18
PD11335a_late	0	0	320	83	0	0
PD11335a_subclonal	54	0	794	147	0	0
PD12337a_clonal	951	212	0	2687	0	174
PD12337a_early	6	1	0	85	0	8
PD12337a_late	5	0	0	24	0	6
PD12337a_subclonal	128	14	0	422	0	14
PD12806a_clonal	887	0	0	595	0	0
PD12806a_early	1	0	0	0	0	0
PD12806a_subclonal	190	0	0	114	0	0
PD12807a_clonal	38	11	0	84	66	0
PD12807a_subclonal	39	25	0	395	165	0
PD12808a_clonal	588	0	0	382	556	51
PD12808a_late	0	0	0	0	2	0
PD12808a_subclonal	467	0	0	295	1081	94
PD12809a_clonal	9	1	0	41	0	0
PD12809a_early	8	2	0	2	0	0
PD12809a_late	3	0	0	0	0	0
PD12809a_subclonal	49	5	0	142	0	0
PD12810a_clonal	383	87	0	580	828	0

PD12810a_subclonal	0	2	0	51	465	0
PD12811a_clonal	315	0	0	819	194	56
PD12811a_subclonal	39	0	0	463	272	47
PD12812a_clonal	24	5	0	73	110	4
PD12812a_early	17	1	0	21	5	0
PD12812a_late	4	5	0	0	50	6
PD12812a_subclonal	0	0	0	340	1555	152
PD12813a_clonal	1230	0	0	1296	0	0
PD12813a_subclonal	15	0	0	53	0	0
PD12814a_clonal	1435	0	0	1052	0	0
PD12814a_subclonal	78	0	0	104	0	0
PD12815a clonal	411	0	0	827	0	0
 PD12815a_late	0	0	0	1	0	0
PD12815a subclonal	2	0	0	33	0	0
PD12816a clonal	66	0	0	44	37	0
PD12816a early	115	0	0	13	18	0
PD12816a late	463	0	0	519	358	0
PD12817a clonal	572	152	0	1857	0	0
PD12817a early	0	0	0	2	0	0
PD12817a subclonal	77	1	0	94	0	0
PD12818a clonal	707	0	0	537	0	0
PD12818a late	0	0	0	4	0	0
PD12818a_subclonal	39	0	0	17	0	0
PD12819a clonal	1123	0	0	923	0	0
PD12819a early	0	0	0	1	0	0
PD12820a_clonal	634	0	0	251	0	0
PD12820a_subclonal	1025	0	0	235	0	0
PD12821a clonal	648	0	0	1062	0	0
PD12821a subclonal	97	0	0	204	0	0
PD12822a clonal	71	4	0	34	0	0
PD12822a_subclonal	22	9	0	52	0	0
PD12823a late	12	0	0	0	0	0
PD12823a_subclonal	154	0	0	334	295	33
PD12824a clonal	639	81	0	1382	0	111
PD12824a_early	50	7	0	216	0	
PD12824a late	54	8	0	114	0	4
PD12824a_subclonal	22	3	0	0	0	2
PD12825a_clonal	1342	0	0	1136	0	-
PD12825a late	0	0	0	1	0	0
PD12826a_clonal	0	0	0	0	3	0
PD12826a_early	40	0	0	0	26	0
PD12826a_late	128	0	0	225	633	0
PD12828a_clonal	379	0	0	368	0	0
PD12828a_early	837	0	0	756	0	0
PD12828a late	277	0	0	207	0	0
PD12828a_subclonal	12	0	0	207	0	0
PD12829a clonal	12 Q11	0 &5	0	1202	0	0
PD12829a_cional	62	12	0	172	0	0
	517	U 51	0	1/09	0	0
DI12830a_ciuliai	200	0	0	2/1	0	0
	230	U	U	541	0	0

PD12831a_clonal	713	0	0	431	0	0
PD12831a_early	363	0	0	190	0	0
PD12831a_late	101	0	0	67	0	0
PD12831a_subclonal	0	0	0	18	0	0
PD12832a_clonal	895	0	0	601	0	0
PD12832a_subclonal	216	0	0	159	0	0
PD12834a_clonal	495	73	0	1041	0	0
PD12834a_early	7	3	0	40	0	0
PD12834a_late	16	0	0	63	0	0
PD12834a_subclonal	81	25	0	300	0	0
PD12835a subclonal	1224	0	0	795	0	0
PD12836a clonal	83	0	0	12	0	0
PD12836a early	1452	0	0	636	0	0
PD12836a late	422	0	0	263	0	0
PD12836a subclonal	2	0	0	1	0	0
PD12837a_clonal	221	0	0	228	0	0
PD12837a_subclonal	282	0	0	490	0	0
PD12838a_clonal	2114	0	0	720	0	0
PD12838a_early	4	0	0	0	0	0
PD12838a late	5	0	0	1	0	0
PD12838a_subclonal	28	0	0	0	0	0
PD128/0a_clonal	28	0	0	300	177	0
PD12840a_ciolidi	201	0	0	525	308	0
PD12840a_subcional	571	30	0	619	0	0
	571	0	0	015	0	0
	2	0	0	0	0	0
PD12041a_Idle	126	0	0	5 196	0	0
PD12841a_Subcional	120	24	0	100	0	38
PD12842a_CIONAI	1311	0	0	1069	0	0
PD12842a_late	1	0	0	0	0	0
PD12842a_subcional	187	0	0	394	0	0
PD12843a_clonal	660	132	0	1589	579	137
PD12843a_early	868	186	0	1902	987	128
PD12843a_late	3/8	110	0	989	574	83
PD12844a_clonal	7	15	0	191	0	0
PD12844a_early	476	100	0	1651	0	0
PD12844a_late	169	77	0	941	0	0
PD12844a_subclonal	0	0	0	16	0	0
PD12845a_clonal	1094	0	0	476	0	0
PD12845a_early	1088	0	0	511	0	0
PD12845a_late	1888	0	0	657	0	0
PD12845a_subclonal	2	0	0	23	0	0
PD13380a_clonal	309	140	966	1043	1283	0
PD13380a_subclonal	6	11	191	0	172	0
PD13381a_clonal	413	0	0	429	0	0
PD13381a_subclonal	956	0	0	839	0	0
PD13382a_clonal	877	0	0	898	716	0
PD13382a_subclonal	28	0	0	49	73	0
PD13383a_clonal	412	0	0	1028	243	0
PD13383a_subclonal	44	0	0	89	187	0
PD13384a_clonal	508	0	0	754	0	0

PD13384a_subclonal	208	0	0	136	0	0
PD13386a_clonal	322	0	0	509	0	0
PD13386a_subclonal	1	0	0	108	0	0
PD13387a_clonal	810	0	0	722	0	0
PD13387a_subclonal	28	0	0	71	0	0
PD13388a_clonal	467	0	0	209	0	0
PD13388a_subclonal	793	0	0	584	0	0
PD13389a_clonal	1344	0	0	838	0	0
PD13389a_late	0	0	0	2	0	0
PD13389a_subclonal	139	0	0	33	0	0
PD13390a clonal	648	0	0	1000	0	0
PD13390a early	20	0	0	9	0	0
PD13390a late	54	0	0	0	0	0
PD13390a subclonal	22	0	0	11	0	0
PD13391a clonal	1326	0	0	670	0	0
PD13391a early	42	0	0	7	0	0
PD13391a late	83	0	0	0	0	0
PD13391a subclonal	0	0	0	2	0	0
PD13392a clonal	0	0	0	0	1	0
PD13392a subclonal	108	0	0	49	111	0
PD13393a early	1	0	0	0	0	0
PD13393a late	3	0	0	0	0	0
PD13393a_subclonal	402	56	0	467	0	0
PD13394a clonal	428	107	0	1807	0	0
PD13394a early	0	4	0	0	0	0
PD13394a late	0	0	0	4	0	0
PD13394a_subclonal	14	9	0	89	0	0
PD13395a clonal	122	0	0	136	98	5
PD13395a early	0	0	0	0	2	0
PD13395a late	8	0	0	16	11	1
PD13396a clonal	1140	0	0	569	0	0
PD13396a subclonal	284	0	0	90	0	0
PD13398a clonal	420	0	0	609	198	0
PD13398a_early	1	0	0	0	3	0
PD13398a late	- 5	0	0	3	1	0
PD13398a_subclonal	3	0	0	0	35	0
PD13399a clonal	341	0	0	344	0	0
PD13399a_subclonal	192	0	0	210	0	0
PD13400a clonal	233	38	0	240	312	0
PD13400a late	0	1	0	2	0	0
PD13401a clonal	500	- 0	0	420	0	0
PD13401a_early	6	0	0	12	0	0
PD13401a late	32	0	0		0	0
PD13401a_subclonal	461	0	0	215	0	0
PD13402a clonal	340	0	0	579	145	0
PD13402a_early	0	0	0	1	0	0
PD13402a late	۵ ۵	0	0	2	0	0
PD13402a_subclonal	יד 103	0	0	702	484	0
PD13404a clonal	23	0	0	, 02 23	۲ ۵۲ ۱	0
PD13404a_subclonal	1050	0	0	23 474	0	0
	1000	Ũ	Ũ	., .	Ũ	0

PD13405a_clonal	550	68	0	1433	0	0
PD13405a_early	6	0	0	15	0	0
PD13405a_late	0	3	0	19	0	0
PD13405a_subclonal	1	0	0	51	0	0
PD13406a_clonal	267	0	0	649	160	0
PD13406a_early	0	0	0	0	8	0
PD13406a_late	2	0	0	1	4	0
PD13406a_subclonal	24	0	0	95	62	0
PD13407a_subclonal	541	89	717	1156	0	0
PD13408a_clonal	524	116	0	1222	31	96
PD13408a_early	11	0	0	57	0	6
PD13408a_late	15	1	0	17	33	11
PD13408a_subclonal	38	37	0	602	594	82
PD13409a_clonal	1498	0	0	420	0	0
PD13409a late	0	0	0	5	0	0
PD13410a clonal	1211	0	0	492	0	0
 PD13410a_subclonal	85	0	0	68	0	0
PD13411a clonal	2	0	0	10	0	0
PD13411a early	411	0	0	339	0	0
PD13411a late	928	0	0	540	0	0
PD13411a subclonal	316	0	0	561	0	0
PD13412a clonal	1116	0	3499	0	3856	0
PD13412a early	45	0	150	0	183	0
PD13412a late	24	0	100	0	430	0
PD13412a subclonal	161	0	520	0	1167	0
PD14706a clonal	1929	0	0	633	0	0
PD14706a subclonal	110	0	0	13	0	0
PD14707a clonal	881	0	0	440	0	0
PD14707a subclonal	321	0	0	190	0	0
PD14708a clonal	1192	0	0	480	0	0
PD14708a subclonal	38	0	0	10	0	0
PD14709a clonal	33	0	0	84	0	6
PD14709a subclonal	371	0	0	1141	0	72
PD14710a clonal	387	0	0	538	0	0
PD14710a subclonal	256	0	0	268	0	0
PD14711a clonal	659	0	0	1265	0	0
PD14711a subclonal	80	0	0	0	0	0
PD14712a clonal	548	0	0	509	0	0
PD14712a late	2	0	0	0	0	0
PD14712a subclonal	34	0	0	47	0	0
PD14713a clonal	809	36	0	853	0	73
PD14713a early	32	0	0	35	0	2
PD14713a late	102	6	0	10	0	10
PD14713a subclonal	165	142	0	396	0	83
PD14714a clonal	218	0	0	233	0	0
PD14714a early	0	0	0	1	0	0
PD14714a subclonal	817	0	0	635	0	0
PD14716a clonal	954	0	0	823	0	0
PD14716a subclonal	307	0	0	204	0 0	0
PD14717a clonal	1214	0	0	547	0	0
		•	•		•	•

PD14717a_subclonal	384	0	0	118	0	0
PD14718a_clonal	844	103	824	694	0	0
PD14718a_subclonal	61	3	56	49	0	0
PD14719a_clonal	1077	0	0	524	0	0
PD14719a_subclonal	304	0	0	222	0	0
PD14720a_clonal	649	0	0	1649	0	120
PD14720a_late	0	0	0	12	0	3
PD14720a_subclonal	0	0	0	6	0	0
PD14721a_clonal	318	0	0	382	0	0
PD14721a_early	1251	0	0	966	0	0
PD14721a late	433	0	0	275	0	0
PD14722a clonal	1286	0	1115	632	1998	149
PD14722a early	28	0	98	27	44	1
PD14722a late	36	0	113	20	112	10
PD14722a subclonal	85	0	390	73	330	58
PD14724a clonal	297	0	0	0	177	0
PD14724a early	1184	0	0	141	831	0
PD14724a late	510	0	0	0	633	0
PD14724a_subclonal	0_0	0	0	0	39	0
PD14725a clonal	496	0	0	284	0	0
PD14725a_subclonal	43	0	0	67	0	0
PD14726a_clonal	257	62	0	716	0	0
PD14726a_subclonal	62	12	0	176	0	0
PD14727a clonal	11	0	0	8	0	0
PD14727a_early	1017	0	0	669	0	0
PD14727a late	677	0	0	265	0	0
PD1/727a_subclonal	0,7	0	0	12	0	0
PD1/728a_clonal	1211	106	0	1669	852	13/
PD14728a_ciollal	50	26	0	1005	202	104
D14728a_eany	106	57	0	120	40	58
PD14720a_iate	100	15	0	132	40 202	
PD14720a_subcional	360	10	0	221	203	/1
	500	20	0	420	0	0
PD14729a_earry	1045	٥٥ 20	0	430	0	0
PD14729a_late	240	20	0	110	0	0
	1064	29	0	712	0	0
PD14730a_early	1064	00 22	0	713	0	0
PD14730a_Iate	409	32	0	300	0	0
PD14730a_Subcional	0	0	0	1	225	12
	224	0	0	245	325	43
PD14731a_early	689	0	0	1568	1206	174
PD14731a_late	312	0	0	1021	1206	159
PD14/31a_subcional	0	0	0	0	4	0
PD14732a_cional	327	0	0	618	0	0
PD14732a_subcional	195	0	0	156	0	0
PD14/33a_clonal	193	0	0	449	170	0
PD14733a_subclonal	174	0	0	88	190	0
PD14734a_clonal	1813	117	0	1067	0	0
PD14734a_early	0	1	0	0	0	0
PD14734a_late	0	0	0	2	0	0
PD14734a_subclonal	42	20	0	74	0	0

PD14735a_clonal	1036	0	0	356	0	0
PD14735a_subclonal	311	0	0	60	0	0
PD14736a_clonal	12	0	0	14	0	0
PD14736a_subclonal	347	0	0	153	0	0
PD6204a_Illumina_ea	0	0	0	8	0	0
PD6204a_Illumina_lat	0	2	0	0	0	0
PD6204a_Illumina_sul	0	38	0	0	0	0
PD9168a_early	855	0	0	747	0	0
PD9168a_late	677	0	0	693	0	0
PD9169a_clonal	525	0	0	1666	0	0
PD9169a_subclonal	78	0	0	179	0	0
PD9746a_early	212	0	0	307	161	14
PD9746a_late	794	0	0	644	1142	147
PD9749a_clonal	836	0	0	1457	0	0
PD9749a_subclonal	42	0	0	203	0	0
PD9751a_clonal	458	0	0	1027	338	0
PD9751a_subclonal	1	0	0	51	91	0

Signature18

0	
0 0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
203	
0 56	
0	
0	
0	
0	
0	
0	
0 13	
40	
13 0	
0	
0	
0	
0	
0	
0	
0	
0	
0 0	
0	
0	
0	

0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
41	
99	
0	
0	
76	
6	
22	
658	
0	
0	
0	
0	
0	

0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
65	
215	
215	
286	
0	
12	
38	
287	
/U 132	
184	
135	
26	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
U	
0 N	
0	
0	
0	
0	
-----	--
0	
0	
0	
0	
0	
0	
0	
65	
271	
110	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
177	
170	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	

				Сох		
		Cox model		multivariate	Cox multivariate	
	Cox model <i>p</i> -	adjusted <i>p</i> -	Hazard	model <i>p</i> -	model hazard	
	value	value (BH)	ratio	value	ratio	
CDH12	0.000085	0.006	9.3	0.00061	7.3	
ANTXR2	0.00033	0.012	7.7	0.0015	6.5	
SPOP	0.0042	0.081	3.9	0.0016	4.8	
IL6ST	0.0046	0.081	4.8	0.0014	6.2	
ZFHX4	0.015	0.22	3.8	0.021	3.6	
NCOA7	0.019	0.23	4.4	0.012	5	
DLC1	0.031	0.26	3.8	0.11	2.8	
PPAP2A	0.032	0.26	2.9	0.037	2.9	
SENP6	0.034	0.26	3.7	0.1	2.8	
MTUS1	0.037	0.26	3.7	0.078	3	
LOH, chr 13:46Mb	0.04	0.26	2.4	0.081	2.2	
GRM1	0.05	0.29	4.4	0.077	3.8	
PDE4D	0.061	0.33	2.8	0.028	3.4	
CHD1	0.069	0.33	2.3	0.04	2.6	
Gain. chr 9:43Mb	0.07	0.33	2.2	0.08	2.1	
LOH. chr 1:235Mb	0.095	0.38	2.4	0.16	2.1	
MTMR7	0.096	0.38	2.8	0.19	2.3	
CDKN1B	0.097	0.38	2.1	0.087	2.3	
MAP3K1	0.14	0.52	2.5	0.11	2.7	
ROBO1	0.15	0.55	2.4	0.26	2	
SI C4A4	0.16	0.56	2.4	0.32	1.9	
IOH chr 6.88Mb	0.21	0.68	17	0.063	2.0	
FTV3	0.28	0.74	2	0.45	1.6	
LOH, chr 8:23Mb	0.29	0.74	1.6	0.4	1.5	
10H, chr 2:141Mb	0.29	0.74	1.8	0.39	1.7	
FTS status	0.3	0.74	0.64	0.24	0.6	
AMBRA1	0.3	0.74	2.2	0.48	1.7	
IFI16	0.34	0.74	2	0.55	1.6	
IOH chr 12·12Mb	0.34	0.74	- 15	0.46	1 4	
	0.35	0.74	2	0.32	2.1	
IOH. chr 5:100Mb	0.35	0.74	-	0.25	1.7	
IOH, chr 3:72Mb	0.36	0.74	0.63	0.23	0.5	
PPP2R2A	0.38	0.74	1 7	0.53	15	
RBM7	0.38	0.74	19	0.63	1.5	
RYRP	0.38	0.74	0.62	0.4	0.63	
IOH chr 16.79Mb	0.30	0.74	0.66	0.49	0.63	
NCOR2	0.43	0.74	1.8	0.29	2.2	
115P28	0.44	0.74	1.8	0.72	13	
PPP4R2	0.45	0.74	0.46	0.42	0.43	
ΓΟΧΔ1	0.45	0.74	1 5	0.16	2 1	
TP53	0.45	0.74	1.5	0.19	1 9	
FRG	0.46	0.74	0.75	0.28	0.64	
ADAM28	0.40 0 47	0.74	1.6	0.20	1 1	
NKX3 1	0. 4 7 0.47	0.74	1.0	0.00	1 1	
10H chr 1.77Mh	0. 4 7 0.47	0.74	15	0.50	1 <u>4</u>	
10H chr 10.02Mh	0. 1 7 ೧ <i>1</i> ೪	0.74	1.5	0.50	1. 4 0 //	
HD chr 10.92 Mb	0.40	0.75	0.05	0.25	0.44	
NFAT1	0.52	0.78	1 6	0.23	1 5	
	0.33	0.70	1.0	0.01	1.5	

Gain, chr 3:130Mb	0.55	0.8	1.4	0.6	1.4
FOXP1	0.58	0.8	1.3	0.57	1.3
TGFBR2	0.58	0.8	0.56	0.47	0.47
ZBTB16	0.64	0.87	1.4	0.95	1
LOH, chr 17:7Mb	0.66	0.88	1.2	0.44	1.5
ZNF292	0.73	0.93	1.2	0.9	0.93
SHQ1	0.73	0.93	0.83	0.69	0.8
LOH, chr 18:73Mb	0.73	0.93	1.2	0.82	1.1
TCF12	0.8	0.99	1.2	0.85	1.2
ROBO2	0.82	0.99	1.2	0.92	0.94
ARHGAP15	0.82	0.99	1.2	0.86	0.87
Gain, chr 8:89Mb	0.87	1	0.93	0.92	1
HD, chr 5:98Mb	0.89	1	1.1	0.83	1.2
APC	0.92	1	1.1	0.75	1.3
Gain, chr 7:53Mb	0.93	1	1	0.9	1.1
MYST3	0.93	1	1.1	0.51	0.55
ASH1L	0.94	1	0.93	0.77	0.74
PTEN	0.96	1	1	0.44	0.67
TBX18	0.96	1	0.96	0.79	0.81
WGD	0.98	1	1	0.9	1.1
TBL1XR1	0.99	1	0.99	0.89	0.86
UBTF	1	1	1.3E-08	1	3.3E-09
GPATCH8	1	1	1.3E-08	1	3.2E-09

UniprotAccesstion	Gene Symbol	Source	Subcellular_l	long_name	node_label
P10275	AR	input_list	Nucl	Androgen re	c AR
P15056	BRAF	input_list	Cyto	Serine/three	or BRAF
P03372	ESR1	additional_er	Nucl	Estrogen rec	e ER-alpha
O15379	HDAC3	additional_er	Nucl	Histone dea	CIHDAC3
Q12809	KCNH2	input_list	Cell membrar	Potassium v	o Kv11.1
Q02750	MAP2K1	additional_co	Cyto	Protein Kina	se
P04150	NR3C1	additional_er	Nucl	Glucocortico	oi GR
P10276	RARA	additional_er	Nucl	Retinoic acid	I RARA
P10826	RARB	additional_er	Nucl	Retinoic acid	I RARB
P13631	RARG	additional_er	Nucl	Retinoic acid	RARG
P19793	RXRA	additional_er	Nucl	Retinoic acid	I RXRA
P31749	AKT1	input_list	Cyto	RAC-alpha se	e Akt1
Q13315	ATM	input_list	Nucl	Serine-prote	ei ATM
Q5S007	LRRK2	input_list	Cell membrar	Leucine-rich	r LRRK2
Q00987	MDM2	additional_co	Nucl	E3 ubiquitin	-protein ligase
Q08499	PDE4D	input_list	Cyto	cAMP-specif	i PDE4D
P42336	PIK3CA	input_list	Cyto	Phosphatidy	li PIK3CA
P42338	PIK3CB	input_list	Cyto	Phosphatidy	li PIK3CB
P04637	TP53	input_list	Nucl	Cellular tum	o p53
P35869	AHR	additional_er	Cyto	Aryl hydroca	Ir AHR
P38398	BRCA1	additional_er	Nucl	Breast cance	er BRCA1
P35222	CTNNB1	input_list	Cyto	Catenin beta	- CTNNB1
P01112	HRAS	input_list	Cell membrar	GTPase HRa	s HRas
075874	IDH1	input_list	Cyto	Isocitrate de	r IDH1
Q14643	ITPR1	input_list	Org Memb	Inositol 1,4,5	5-IP3R1
Q14571	ITPR2	input_list	Org Memb	Inositol 1,4,5	5-IP3R2
P05412	JUN	additional_er	Nucl	Transcription	n Jun
Q13233	MAP3K1	input_list	Cyto	Mitogen-act	iv MEKK1
O00255	MEN1	additional_er	Nucl	Menin	MEN1
075376	NCOR1	input_list	Nucl	Nuclear rece	r N-CoR1
Q9Y618	NCOR2	input_list	Nucl	Nuclear rece	er SMRT
P22736	NR4A1	additional_er	Nucl	Nuclear rece	er Nur77
P27986	PIK3R1	input_list	Cyto	Phosphatidy	li PIK3R1
P63151	PPP2R2A	input_list	Cyto	Serine/three	or PPP2R2A
P58335	ANTXR2	input_list	Cell membrar	Anthrax toxi	n ANTXR2
P25054	APC	input_list	Cell membrar	Adenomato	L: APC
P27540	ARNT	additional_er	Nucl	Aryl hydroca	IT ARNT
Q9NR48	ASH1L	input_list	Nucl	Histone-lysir	NASH1L
P51587	BRCA2	input_list	Nucl	Breast cance	er BRCA2
043439	CBFA2T2	additional er	Nucl	Protein CBF	CBFA2T2

P55289	CDH12	input_list	Cell membrar	Cadherin-12 CDH12
Q9NYV4	CDK12	input_list	Nucl	Cyclin-depen CDK12
014646	CHD1	input_list	Nucl	Chromodoma CHD-1
Q92793	CREBBP	additional_er	Cyto	CREB-binding CBP
Q96QB1	DLC1	input_list	Cyto	Rho GTPase-a DLC1
Q96BY6	DOCK10	input_list	Cell membrar	Dedicator of DOCK10
P11308	ERG	input_list	Nucl	Transcription ERG
Q5FWF5	ESCO1	input_list	Nucl	N-acetyltrans ESCO1
P41162	ETV3	input_list	Nucl	ETS transloca ETV3
P55317	FOXA1	input_list	Nucl	Hepatocyte n FOXA1
P55316	FOXG1	additional_er	Nucl	Forkhead box FOXG1
Q12778	FOXO1	input_list	Nucl	Forkhead box FOXO1A
P98177	FOXO4	additional_er	Nucl	Forkhead box FOXO4
Q9H334	FOXP1	input_list	Nucl	Forkhead box FOXP1
P15976	GATA1	additional_er	Nucl	Erythroid trar GATA1
P23769	GATA2	additional_er	Nucl	Endothelial tr GATA2
P51858	HDGF	additional_er	Cyto	Hepatoma-de HDGF
P41235	HNF4A	additional_er	Nucl	Hepatocyte n HNF4 alpha
P40189	IL6ST	input_list	Cell membrar	Interleukin-6 gp130
Q92794	KAT6A	input_list	Nucl	Histone acety MYST3
075164	KDM4A	additional_er	Nucl	Lysine-specifi JMJD2A
015550	KDM6A	input_list	Nucl	Lysine-specifi UTX
Q8NEZ4	KMT2C	input_list	Nucl	Histone-lysin(MLL3
O14686	KMT2D	input_list	Nucl	Histone-lysin MLL4
Q96PU5	NEDD4L	input_list	Cyto	E3 ubiquitin-¡ NEDD4L
Q99801	NKX3-1	input_list	Nucl	Homeobox pr NKX3-1
075925	PIAS1	additional_er	Nucl	E3 SUMO-prc PIAS1
075928	PIAS2	additional_er	Nucl	E3 SUMO-prc PIAS2
P60484	PTEN	input_list	Cyto	Phosphatidyli PTEN
P06400	RB1	input_list	Nucl	Retinoblastor Rb
Q68DV7	RNF43	input_list	Cell membrar	E3 ubiquitin-¡ RNF43
P12755	SKI	additional_er	Nucl	Ski oncogene SKI
Q15796	SMAD2	input_list	Cyto	Mothers agai SMAD2
P84022	SMAD3	additional_er	Cyto	Mothers agai SMAD3
Q13485	SMAD4	input_list	Cyto	Mothers agai SMAD4
P51532	SMARCA4	additional_er	Nucl	Transcription SMARCA4
095238	SPDEF	additional_er	Nucl	SAM pointed SPDEF
043791	SPOP	input_list	Nucl	Speckle-type SPOP
060907	TBL1X	additional_er	Nucl	F-box-like/WITBL1X
Q9BZK7	TBL1XR1	input_list	Nucl	F-box-like/WITBL1XR1
015119	ТВХЗ	input_list	Nucl	T-box transcr TBX3
015350	ТР73	additional_er	Cyto	Tumor protei p73
Q05516	ZBTB16	input_list	Nucl	Zinc finger an PLZF
Q9Y6X8	ZHX2	additional_er	Nucl	Zinc fingers a ZHX2

Q9NY61	AATF	additional_e	er Nucl	Protein AATF	AATF
Q9UKQ2	ADAM28	input_list	Cell membrar	Disintegrin ar	ADAM28
Q08117	AES	additional_	connectivity	Amino-termir	AES
P05067	APP	additional_	connectivity	Amyloid beta	APP
014497	ARID1A	input_list	Nucl	AT-rich intera	ARID1A
Q68CP9	ARID2	input_list	Nucl	AT-rich intera	ARID2
Q4LE39	ARID4B	input_list	Nucl	AT-rich intera	ARID4B
Q76L83	ASXL2	input_list	Nucl	Putative Poly	ASXL2
095352	ATG7	input_list	Cyto	Ubiquitin-like	ATG7
P54253	ATXN1	additional_o	connectivity	Ataxin-1	ataxin-1
Q8WY36	BBX	additional_e	er Nucl	HMG box trai	HBP2
Q86V15	CASZ1	input_list	Nucl	Zinc finger pr	CASZ1
Q9ULB5	CDH7	additional_o	connectivity	Cadherin-7	CDH7
P46527	CDKN1B	input_list	Nucl	Cyclin-depen	p27Kip1
P17676	CEBPB	additional_e	er Nucl	CCAAT/enhar	C/EBP-beta
Q9NZN8	CNOT2	additional_e	er Nucl	CCR4-NOT tra	NOT2
075175	CNOT3	input_list	Nucl	CCR4-NOT tra	NOT3
Q6UUV9	CRTC1	additional_e	er Nucl	CREB-regulate	TORC1
Q96PT4	DUX3	additional_e	er Nucl	Putative doul	DUX3
000716	E2F3	additional_e	er Nucl	Transcription	E2F3
Q7Z589	EMSY	additional_e	er Nucl	BRCA2-intera	EMSY
075593	FOXH1	additional_e	er Nucl	Forkhead box	FOXH1
043524	FOXO3	additional_e	er Cyto	Forkhead box	FOXO3A
000168	FXYD1	additional_	connectivity	Phospholemr	PLM
P10071	GLI3	additional_e	er Nucl	Transcription	GLI3
Q96IK5	GMCL1	additional_o	connectivity	Germ cell-les:	GMCL1
Q9UKJ3	GPATCH8	input_list	Cyto	G patch doma	GPATCH8
Q13227	GPS2	additional_e	er Nucl	G protein pat	GPS2
P68431	HIST1H3A HI	additional_o	cc Nucl	Histone H3.1	H3
Q5VVH5	IRAK1BP1	additional_e	er Cyto	Interleukin-1	IRAK1BP1
P13612	ITGA4	additional_o	connectivity	Integrin alpha	ITGA4
Q92993	KAT5	additional_	connectivity	Histone acety	Tip60
Q9NZR2	LRP1B	input_list	Cell membrar	Low-density l	LRP1B
P43364	MAGEA11	additional_o	connectivity	Melanoma-as	MAGE-A11
Q03112	MECOM	additional_e	er Nucl	MDS1 and EV	EVI1
Q13465	MECOM	additional_e	er Nucl	MDS1 and EV	MDS1
Q02078	MEF2A	additional_e	er Nucl	Myocyte-spe	MEF2A
Q03111	MLLT1	additional_e	er Nucl	Protein ENL	MLLT1
Q9ULD2	MTUS1	input_list	Cyto	Microtubule-	MTUS1
P01106	MYC	additional_e	er Nucl	Myc proto-or	Мус
Q8NI08	NCOA7	input_list	Nucl	Nuclear recep	NCOA7
Q12857	NFIA	additional_e	er Nucl	Nuclear facto	NFI-A
Q13952	NFYC	additional_e	er Nucl	Nuclear trans	NFYC
043929	ORC4	additional_	connectivity	Origin recogn	ORC4L

014494	PLPP1 PPAP2	input_list	Cell membrar	Phospholipid PPAP2A
P29590	PML	additional_er	Nucl	Protein PML PML
P67775	PPP2CA	additional_co	onnectivity	Serine/threor PPP2CA
P17612	PRKACA	additional_cc	Cyto	cAMP-depen(PKACA
075400	PRPF40A	additional_cc	Nucl	Pre-mRNA-pr FNBP3
P28749	RBL1	additional_er	Nucl	Retinoblastor Rb-like 1
Q9NVW2	RLIM	input_list	Nucl	RNF12 ہ- RNF12
Q9Y6N7	ROBO1	input_list	Cell membrar	Roundabout ROBO1
Q9HCK4	ROBO2	input_list	Cell membrar	Roundabout ROBO2
P62913	RPL11	input_list	Nucl	60S ribosoma RPL11
Q13950	RUNX2	additional_er	Nucl	Runt-related AML3
Q8N488	RYBP	input_list	Nucl	RING1 and YY RYBP
Q9GZR1	SENP6	input_list	Nucl	Sentrin-speci SENP6
Q6PI26	SHQ1	input_list	Cyto	Protein SHQ1 SHQ1
Q96ST3	SIN3A	additional_er	Nucl	Paired amphi SIN3A
075182	SIN3B	additional_er	Nucl	Paired amphi SIN3B
015105	SMAD7	additional_er	Cyto	Mothers agai SMAD7
Q12824	SMARCB1	additional_er	Nucl	SWI/SNF-rela SMARCB1
P08047	SP1	additional_er	Nucl	Transcription SP1
P11831	SRF	additional_er	Nucl	Serum respor SRF
Q08945	SSRP1	additional_er	Nucl	FACT comple: SSRP1
075528	TADA3	additional_er	Nucl	Transcription TADA3L
P05549	TFAP2A	additional_er	Nucl	Transcription AP-2 alpha
043294	TGFB1I1	additional_er	Extracellular	Transforming Hic-5
P51668	UBE2D1	additional_co	onnectivity	Ubiquitin-cor UBE2D1
P17480	UBTF	input_list	Nucl	Nucleolar tra: UBF
Q96RU2	USP28	input_list	Nucl	Ubiquitin carl USP28
P25490	YY1	additional_er	Nucl	Transcription YY1
015391	YY2	additional_er	Nucl	Transcription YY2
095365	ZBTB7A	additional_er	Nucl	Zinc finger an FBI1
P37275	ZEB1	additional_er	Nucl	Zinc finger E- TCF8
Q15911	ZFHX3	input_list	Nucl	Zinc finger hc ATBF1
Q9UKY1	ZHX1	additional_cc	Nucl	Zinc fingers a ZHX1
060481	ZIC3	additional_er	Nucl	Zinc finger pr ZIC3
Q14202	ZMYM3	input_list	Nucl	Zinc finger M ZNF261

Druggability	protein	Synonyms	Transcriptional_class	description
1 DT	AR		TF	Androgen rec
1 DT	BRAF			Serine/threor
1 DT	ER-alpha	ER	TF	Estrogen rece
1 DT	HDAC3	HD3	activator/repressor	Histone deace
1 DT	Kv11.1	ERG-1 Eag-re	elated protein 1 Ether-a-go-	Potassium vo
1 DT	Mek1	MP2K1_HUM	1AN, MAP2K1, MEK1, PRKM	Dual specifici
1 DT	GR	GR	TF	Glucocorticoi
1 DT	RARA	RAR-alpha	TF	Retinoic acid
1 DT	RARB	RAR-beta	regulation	Retinoic acid
1 DT	RARG	RAR-gamma	regulation	Retinoic acid
1 DT	RXRA		regulation	Retinoic acid
2 CT	Akt1	PKB PKB alph	าล	RAC-alpha se
2 CT	ATM	A-T mutated		Serine-protei
2 CT	LRRK2			Leucine-rich r
2 CT	MDM2	MDM2		E3 ubiquitin-
2 CT	PDE4D			cAMP-specific
2 CT	PIK3CA	PI3-kinase su	bunit alpha PI3K-alpha PI3	Phosphatidyli
2 CT	PIK3CB	PI3-kinase su	bunit beta PI3K-beta PI3Kb	Phosphatidyli
2 AC-CT	p53		TF	Cellular tumo
3 AC	AHR	Ah receptor	،TF	Aryl hydrocar
3 AC	BRCA1		activator/repressor	Breast cancer
3 AC	CTNNB1		TF	Catenin beta-
3 AC	HRas			GTPase HRas
3 AC	IDH1	IDH		Isocitrate del
3 AC	IP3R1	IP3R 1 InsP3	R1 Type 1 InsP3 receptor	Inositol 1,4,5-
3 AC	IP3R2	IP3R 2 InsP3	R2 Type 2 InsP3 receptor	Inositol 1,4,5-
3 AC	Jun	AP1	TF	Transcription
3 AC	MEKK1	MEK kinase 1	MEKK 1	Mitogen-activ
3 AC	MEN1		activator/repressor	Menin
3 AC	N-CoR1	N-CoR N-CoF	activator/repressor	Nuclear recer
3 AC	SMRT	N-CoR2 SMR	activator/repressor	Nuclear recer
3 AC	Nur77	Nur77	regulation	Nuclear recer
3 AC	PIK3R1	PI3-kinase re	gulatory subunit alpha PI3-	Phosphatidyli a state s
3 AC	PPP2R2A			Serine/threor
4 Dr	ANTXR2	CMG-2		Anthrax toxin
4 Dr	APC	Protein APC		Adenomatous
4 Dr	ARNT	ARNT protein	1 TF	Aryl hydrocar
4 Dr	ASH1L	huASH1		Histone-lysine
4 Dr	BRCA2			Breast cancer
4 Dr	CBFA2T2		activator/repressor	Protein CBFA

4 Dr	CDH12	BR-cadherin	N-cadherin 2	Cadherin-12
4 Dr	CDK12	CDC2-related	protein kinase 7 CrkRS hC	Cyclin-depend
4 Dr	CHD-1	CHD-1		Chromodoma
4 Dr	СВР		activator/repressor	CREB-binding
4 Dr	DLC1	DLC-1 StARD	12	Rho GTPase-a
4 Dr	DOCK10			Dedicator of d
4 Dr	ERG		TF	Transcription
4 Dr	ESCO1	ECO1 homolo	g 1 EFO1p ESO1 homolog	N-acetyltrans
4 Dr	ETV3	PE-1		ETS transloca
4 Dr	FOXA1	HNF-3-alpha	TF	Hepatocyte n
4 Dr	FOXG1	BF-1 BF-2 BF	TF	Forkhead box
4 Dr	FOXO1A		TF	Forkhead box
4 Dr	FOXO4		TF	Forkhead box
4 Dr	FOXP1	MFH	TF	Forkhead box
4 Dr	GATA1	GATA-1 GF-1	TF	Erythroid trar
4 Dr	GATA2		TF	Endothelial tr
4 Dr	HDGF	HDGF HMG-1	regulation	Hepatoma-de
4 Dr	HNF4 alpha	HNF-4-alpha	TF	Hepatocyte n
4 Dr	gp130	IL-6 receptor	subunit beta IL-6R subunit	Interleukin-6
4 Dr	MYST3	MYST-3		Histone acety
4 Dr	JMJD2A		activator/repressor	Lysine-specifi
4 Dr	UTX			Lysine-specifi
4 Dr	MLL3	Lysine N-met	hyltransferase 2C	Histone-lysine
4 Dr	MLL4	Lysine N-met	regulation	Histone-lysine
4 Dr	NEDD4L			E3 ubiquitin-
4 Dr	NKX3-1		TF	Homeobox pr
4 Dr	PIAS1	GBP	activator/repressor	E3 SUMO-pro
4 Dr	PIAS2	ARIP3 DIP M	activator/repressor	E3 SUMO-pro
4 Dr	PTEN			Phosphatidyli
4 Dr	Rb	Rb	activator/repressor	Retinoblastor
4 Dr	RNF43			E3 ubiquitin-
4 Dr	SKI		activator/repressor	Ski oncogene
4 Dr	SMAD2	MAD homolo	TF	Mothers agai
4 Dr	SMAD3	MAD homolo	TF	Mothers agai
4 Dr	SMAD4	MAD homolo	activator/repressor	Mothers agai
4 Dr	SMARCA4	BAF190A	activator/repressor	Transcription
4 Dr	SPDEF	Prostate-spec	TF	SAM pointed
4 Dr	SPOP			Speckle-type
4 Dr	TBL1X		activator/repressor	F-box-like/WI
4 Dr	TBL1XR1		activator/repressor	F-box-like/WI
4 Dr	TBX3	T-box protein	TF	T-box transcri
4 Dr	p73		TF	Tumor protei
4 Dr	PLZF		activator/repressor	Zinc finger an
4 Dr	ZHX2	AFP regulator	TF	Zinc fingers a

AATF		TF	Protein AATF
ADAM28	ADAM 28 M	DC-L eMDC II	Disintegrin ar
AES	Amino enhar	Amino-termir	
APP	AICD-50 AIC	I TF	Amyloid beta
ARID1A	ARID domain	-containing protein 1A BAF	AT-rich intera
ARID2	ARID domain	-containing protein 2 BAF2	(AT-rich intera
ARID4B	ARID domain	-containing protein 4B Sin3	AT-rich intera
ASXL2			Putative Poly
ATG7	APG7-like hA	AGP7	Ubiquitin-like
ataxin-1			Ataxin-1
HBP2		TF	HMG box trar
CASZ1		TF	Zinc finger pre
CDH7			Cadherin-7
p27Kip1			Cyclin-depend
C/EBP-beta	C/EBP beta	ITF	CCAAT/enhar
NOT2		activator/repressor	CCR4-NOT tra
NOT3			CCR4-NOT tra
TORC1	TORC-1 Tran	: TF	CREB-regulate
		TF	Putative douk
E2F3	E2F-3	TF	Transcription
EMSY		regulation	BRCA2-intera
	Fast-1 Fast-2	2 TF	Forkhead box
FOXO3A		TF	Forkhead box
PLM			Phospholemn
GLI3	GLI3-190 GL	ITF	Transcription
GMCL1			Germ cell-less
GPATCH8			G patch doma
GPS2	GPS-2	activator/repressor	G protein pat
H3			Histone H3.1
IRAK1BP1	IRAK1-bindin	{regulation	Interleukin-1
ITGA4			Integrin alpha
Tip60	HIV-1 Tat inte	eractive protein Tip60	Histone acety
LRP1B	LRP-1B LRP-I	DIT	Low-density li
MAGE-A11	CT1.11	activator/repressor	Melanoma-as
EVI1	EVI-1	activator/repressor	MDS1 and EV
MDS1		TF	MDS1 and EV
MEF2A		TF	Myocyte-spec
MLLT1		regulation	Protein ENL
MTUS1			Microtubule-
Мус	bHLHe39	TF	Myc proto-on
NCOA7		activator/repressor	Nuclear recer
NFI-A	CTF NF-I/A I	NTF	Nuclear facto
NFYC	NF-YC	TF	Nuclear trans
ORC4L			Origin recogn

PPAP2A	PAP-2a PAP2	a		
PML	TF			
PPP2CA	PP2A-alpha F	RP-C		
РКАСА	PKA C-alpha			
FNBP3	HIP-10			
Rb-like 1	p107	activator/repressor		
RNF12	R-LIM	activator/repressor		
ROBO1				
ROBO2				
RPL11				
AML3	CBF-alpha-1	TF		
RYBP	APAP-1 DED-	activator/repressor		
SENP6				
SHQ1				
SIN3A		activator/repressor		
SIN3B		activator/repressor		
SMAD7	MAD homolo	TF		
SMARCB1	BAF47 hSNF5	activator/repressor		
SP1		TF		
SRF	SRF	TF		
SSRP1	FACT 80 kDa	initiation_complex		
TADA3L	ADA3-like pro	TF		
AP-2 alpha	AP-2 AP2-alp	TF		
Hic-5	Hic-5	activator/repressor		
UBE2D1	SFT			
UBF	UBF-1	TF		
USP28				
YY1	YY-1	TF		
YY2	YY-2	TF		
FBI1	FBI-1 POK er	TF		
TCF8	TCF-8	activator/repressor		
ATBF1	ZFH-3	TF		
ZHX1		TF		
ZIC3		TF		
ZNF261				

Phospholipid Protein PML Serine/threor cAMP-depend Pre-mRNA-pr Retinoblastor E3 ubiquitin-Roundabout I Roundabout I 60S ribosoma Runt-related RING1 and YY Sentrin-specit Protein SHQ1 Paired amphi Paired amphi Mothers agai SWI/SNF-rela Transcription Serum respor FACT comple> Transcription Transcription Transforming Ubiquitin-con Nucleolar trai Ubiquitin carl Transcription Transcription Zinc finger an Zinc finger E-I Zinc finger ho Zinc fingers a Zinc finger pro Zinc finger M'

ec_number location go_terms family cansar_link eptor Nucleus, Cytoplasm nuclear horm <a href="http://cansar.icr.ac.uk/cansar/i 2.7.11.1 Nucleus, Cytc cell body, cyt TKL Ser/Thr p <a href="http://cansar.icr.ac.uk/cansar/r Nucleus, Cytoplasm, Cell m nuclear horm <a href="http://cansar.icr.ac.uk/cansar/r ptor 3.5.1.98 Nucleus, Cytc cytoplasm, cy histone deace <a href="http://cansar.icr.ac.uk/cansar/i Itage-gated cr Cell membrar cell surface, r potassium ch <a href="http://cansar.icr.ac.uk/cansar/i 2.7.12.2 Cytoplasm, cycytoplasm, cySTE Ser/Thr p <a href="http://cansar.icr.ac.uk/cansar/r Cytoplasm, Nucleus, Mitocl nuclear horm <a href="http://cansar.icr.ac.uk/cansar/i d receptor receptor alph Nucleus, Cytcactin cytoskelnuclear horm <a href="http://cansar.icr.ac.uk/cansar/i receptor beta Nucleus, Nuc cytoplasm, nı nuclear horm <a href="http://cansar.icr.ac.uk/cansar/ı receptor gam Nucleus integral comr nuclear horm <a href="http://cansar.icr.ac.uk/cansar/i receptor RXR- Nucleus axon, nuclear nuclear horm <a href="http://cansar.icr.ac.uk/cansar/i 2.7.11.1 Cytoplasm, N cell-cell junct AGC Ser/Thr <a href="http://cansar.icr.ac.uk/cansar/ 2.7.11.1 Nucleus, Cytc cytoplasmic, IPI3/PI4-kinasi <a href="http://cansar.icr.ac.uk/cansar/i 2.7.11.1 Membrane, Camphisome, TKL Ser/Thr p <a href="http://cansar.icr.ac.uk/cansar/ 6.3.2.-Nucleus, nucl cytoplasm, cy MDM2/MDM <a href="http://cansar.icr.ac.uk/cansar/ Apical cell meapical plasma cyclic nucleot <a href="http://cansar.icr.ac.uk/cansar/i 3.1.4.53 2.7.1.153 cytosol, lame PI3/PI4-kinas-<a href="http://cansar.icr.ac.uk/cansar/i 2.7.1.153 Cytoplasm, N cytosol, inter PI3/PI4-kinas <a href="http://cansar.icr.ac.uk/cansar/i r antigen p53 Cytoplasm, Nucleus, Nucleup53 family <a href="http://cansar.icr.ac.uk/cansar/r bon receptor Cytoplasm, N cytoplasm, cytosolic aryl hy <a href="http://cansar.icr.ac.uk/cansar/r Nucleus, Chrc BRCA1-A complex, BRCA1-E <a href="http://cansar.icr.ac.uk/cansar/r 6.3.2.-Cytoplasm, N adherens jun beta-catenin <a href="http://cansar.icr.ac.uk/cansar/r 1 Cell membrane, Cell memb Ras family <a href="http://cansar.icr.ac.uk/cansar/r 1.1.1.42 Cytoplasm, Prcytoplasm, cy isocitrate and <a href="http://cansar.icr.ac.uk/cansar/r trisphosphateEndoplasmic calcineurin ccInsP3 receptc <a href="http://cansar.icr.ac.uk/cansar/r</pre> trisphosphate Endoplasmic cell cortex, er InsP3 receptc <a href="http://cansar.icr.ac.uk/cansar/r factor AP-1 Nucleus cytosol, nuclebZIP family <a href="http://cansar.icr.ac.uk/cansar/r 2.7.11.25 cytoplasm, cySTE Ser/Thr p <a href="http://cansar.icr.ac.uk/cansar/r Nucleus chromatin, cleavage furrow <a href="http://cansar.icr.ac.uk/cansar/r otor corepress Nucleus membrane, nN-CoR nuclea <a href="http://cansar.icr.ac.uk/cansar/r otor corepress Nucleus histone deace N-CoR nuclea <a href="http://cansar.icr.ac.uk/cansar/r ptor subfamily Cytoplasm, N cytoplasm, ni nuclear horm <a href="http://cansar.icr.ac.uk/cansar/r nositol 3-kinase regulatory cell-cell junct PI3K p85 subi <a href="http://cansar.icr.ac.uk/cansar/r nine-protein phosphatase 2, cytosol, nucle phosphatase <a href="http://cansar.icr.ac.uk/cansar/r receptor 2 Cell membrar endoplasmic ATR family <a href="http://cansar.icr.ac.uk/cansar/r s polyposis co Cell junction, adherens jun adenomatous <a href="http://cansar.icr.ac.uk/cansar/r bon receptor Nucleus cytoplasm, nucleoplasm, ni <a href="http://cansar.icr.ac.uk/cansar/r 2.1.1.43 Nucleus, Cell bicellular tigh Histone-lysin <a href="http://cansar.icr.ac.uk/cansar/r type 2 suscer Nucleus, Cytc BRCA2-MAGE-D1 complex, <a href="http://cansar.icr.ac.uk/cansar/r 2T2 **Nucleus** nucleus CBFA2T famil <a href="http://cansar.icr.ac.uk/cansar/r

Cell membrar integral component of men <a href="http://cansar.icr.ac.uk/cansar/r 2.7.11.22 Nucleus, Nuc cyclin K-CDK1 CMGC Ser/Th <a href="http://cansar.icr.ac.uk/cansar/r 3.6.4.12 Nucleus, Cytc cytoplasm, nι SNF2/RAD54 <a href="http://cansar.icr.ac.uk/cansar/r 2.3.1.48 Cytoplasm, N cytoplasm, histone acetyltr <a href="http://cansar.icr.ac.uk/cansar/r ictivating prot Cytoplasm, Cicaveola, cortical actin cytos <a href="http://cansar.icr.ac.uk/cansar/r extracellular DOCK family <a href="http://cansar.icr.ac.uk/cansar/r cytokinesis protein 10 al regulator El Nucleus, Cytc cytoplasm, in ETS family <a href="http://cansar.icr.ac.uk/cansar/r 2.3.1.-Nucleus, Chrcchromatin, niacetyltransfei<a href="http://cansar.icr.ac.uk/cansar/r tion variant 3 Nucleus nuclear chror ETS family <a href="http://cansar.icr.ac.uk/cansar/r uclear factor : Nucleus microvillus, nucleolus, nucl-<a href="http://cansar.icr.ac.uk/cansar/r protein G1 **Nucleus** nucleus <a href="http://cansar.icr.ac.uk/cansar/r Cytoplasm, N cytoplasm, cytosol, mitoch(<a href="http://cansar.icr.ac.uk/cansar/r protein 01 protein O4 Cytoplasm, N cytoplasm, cytosol, nucleor <a href="http://cansar.icr.ac.uk/cansar/r <a href="http://cansar.icr.ac.uk/cansar/r protein P1 **Nucleus** nucleoplasm, nucleus nucleoplasm, nucleus, tran <a href="http://cansar.icr.ac.uk/cansar/r iscription fact Nucleus anscription fa Nucleus cytosol, mast cell granule, r HDGF family <a href="http://cansar.icr.ac.uk/cansar/r uclear factor 4 Nucleus cytoplasm, nunuclear horm <a href="http://cansar.icr.ac.uk/cansar/r receptor subl Cell membrar ciliary neurot type I cytokin <a href="http://cansar.icr.ac.uk/cansar/r Nucleus, Nuc Golgi apparat MYST (SAS/M <a href="http://cansar.icr.ac.uk/cansar/r 2.3.1.48 1.14.11.-**Nucleus** cytoplasm, ni JHDM3 histor <a href="http://cansar.icr.ac.uk/cansar/r 1.14.11.-**Nucleus** histone meth UTX family <a href="http://cansar.icr.ac.uk/cansar/r 2.1.1.43 Nucleus histone meth Histone-lysin(<a href="http://cansar.icr.ac.uk/cansar/r histone meth Histone-lysin(<a href="http://cansar.icr.ac.uk/cansar/r 2.1.1.43 **Nucleus** 6.3.2.cytoplasm, cytosol, extrace <a href="http://cansar.icr.ac.uk/cansar/r Cytoplasm intracellular, NK-3 homeot <a href="http://cansar.icr.ac.uk/cansar/r otein Nkx-3.1 Nucleus 6.3.2.-Nucleus specinuclear speck PIAS family <a href="http://cansar.icr.ac.uk/cansar/r Nucleus specinuclear speck PIAS family 6.3.2.-<a href="http://cansar.icr.ac.uk/cansar/r 3.1.3.16 Cytoplasm, N apical plasma membrane, c <a href="http://cansar.icr.ac.uk/cansar/r chromatin, nuretinoblaston <a href="http://cansar.icr.ac.uk/cansar/r na-associated Nucleus 6.3.2.-Cell membrar endoplasmic ZNRF3 family <a href="http://cansar.icr.ac.uk/cansar/r **Nucleus** centrosome, SKI family <a href="http://cansar.icr.ac.uk/cansar/r nst decapenta Cytoplasm, N activin respoi dwarfin/SMA <a href="http://cansar.icr.ac.uk/cansar/r nst decapentaCytoplasm, N cytoplasm, cy dwarfin/SMA <a href="http://cansar.icr.ac.uk/cansar/r nst decapentaCytoplasm, N activin respordwarfin/SMA <a href="http://cansar.icr.ac.uk/cansar/r 3.6.4.-**Nucleus** extracellular : SNF2/RAD54 <a href="http://cansar.icr.ac.uk/cansar/r domain-conta Nucleus ETS family <a href="http://cansar.icr.ac.uk/cansar/r nucleus POZ protein Nucleus, Nuc Cul3-RING ub Tdpoz family <a href="http://cansar.icr.ac.uk/cansar/r D repeat-cont Nucleus nucleoplasm, WD repeat EI <a href="http://cansar.icr.ac.uk/cansar/r D repeat-cont Nucleus nucleoplasm, WD repeat EI <a href="http://cansar.icr.ac.uk/cansar/r iption factor T Nucleus nucleus <a href="http://cansar.icr.ac.uk/cansar/r n p73 Nucleus, Cytc cell junction, p53 family <a href="http://cansar.icr.ac.uk/cansar/r d BTB domain Nucleus cytosol, nucle krueppel C2H <a href="http://cansar.icr.ac.uk/cansar/r nd homeobox Nucleus <a href="http://cansar.icr.ac.uk/cansar/r cytoplasm, ni ZHX family

Nucleus, nucl centrosome, AATF family <a href="http://cansar.icr.ac.uk/cansar/r 3.4.24.-Cell membrar extracellular region, integra <a href="http://cansar.icr.ac.uk/cansar/r nal enhancer c Nucleus nucleus WD repeat GI<a href="http://cansar.icr.ac.uk/cansar/r A4 protein Membrane, Membrane, cla APP family <a href="http://cansar.icr.ac.uk/cansar/r ctive domain-Nucleus nBAF complex, npBAF complex href="http://cansar.icr.ac.uk/cansar/r ctive domain-Nucleus BAF-type complex, nucleop <a href="http://cansar.icr.ac.uk/cansar/r ctive domain-Nucleus, Cytc cytoplasm, nucleoplasm, nu <a href="http://cansar.icr.ac.uk/cansar/r comb group p Nucleus nucleoplasm Asx family <a href="http://cansar.icr.ac.uk/cansar/r modifier-acti Cytoplasm, Praxoneme, cyt ATG7 family <a href="http://cansar.icr.ac.uk/cansar/r

Cytoplasm, N cytoplasm, in ATXN1 family <a href="http://cansar.icr.ac.uk/cansar/r nscription fact Nucleus cytoplasm, nucleoplasm <a href="http://cansar.icr.ac.uk/cansar/r otein castor h Nucleus cytoplasm, intracellular me <a href="http://cansar.icr.ac.uk/cansar/r

Cell membrar integral component of men <a href="http://cansar.icr.ac.uk/cansar/r <a href="http://cansar.icr.ac.uk/cansar/r Jent kinase in Nucleus, Cytc Cul4A-RING E CDI family cer-binding p Nucleus, Cytc CHOP-C/EBP bZIP family <a href="http://cansar.icr.ac.uk/cansar/r inscription coi Cytoplasm, N CCR4-NOT co CNOT2/3/5 fa<a href="http://cansar.icr.ac.uk/cansar/r inscription coi Cytoplasm, N CCR4-NOT co CNOT2/3/5 fa<a href="http://cansar.icr.ac.uk/cansar/r ed transcriptic Cytoplasm, N cytoplasm, de TORC family <a href="http://cansar.icr.ac.uk/cansar/r paired homec <a href="http://cansar.icr.ac.uk/cansar/r ble homeobox Nucleus nucleus cytoplasm, ni E2F/DP family <a href="http://cansar.icr.ac.uk/cansar/r factor E2F3 Nucleus cting transcrip Nucleus <a href="http://cansar.icr.ac.uk/cansar/r nucleoplasm : protein H1 Nucleus activin responsive factor co <a href="http://cansar.icr.ac.uk/cansar/r protein O3 Cytoplasm, cycytoplasm, cytosol, membr <a href="http://cansar.icr.ac.uk/cansar/r Membrane chloride chan FXYD family <a href="http://cansar.icr.ac.uk/cansar/r nan al activator GI Nucleus, Cytc axoneme, cili GLI C2H2-typ <a href="http://cansar.icr.ac.uk/cansar/r s protein-like : Nucleus matr nuclear envelope, nuclear r <a href="http://cansar.icr.ac.uk/cansar/r <a href="http://cansar.icr.ac.uk/cansar/r ain-containing protein 8

nucleoplasm, transcription; <a href="http://cansar.icr.ac.uk/cansar/r hway suppressor 2 Nucleus, Chromosome histone H3 fa <a href="http://cansar.icr.ac.uk/cansar/r receptor-asso Cytoplasm, N cytoplasm, in IRAK1BP1 fan <a href="http://cansar.icr.ac.uk/cansar/r 1-4 Membrane cell surface, e integrin alpha <a href="http://cansar.icr.ac.uk/cansar/r 2.3.1.48 Nucleus, Nuc NuA4 histone MYST (SAS/M<a href="http://cansar.icr.ac.uk/cansar/r ipoprotein rec Membrane integral comr LDLR family <a href="http://cansar.icr.ac.uk/cansar/r isociated antig Nucleus, Cytc cytoplasm, mitochondrion, <a href="http://cansar.icr.ac.uk/cansar/r 11 complex lo Nucleus, Nuc aggresome, cytoplasm, cytc<a href="http://cansar.icr.ac.uk/cansar/r 11 complex locus protein MDS1 <a href="http://cansar.icr.ac.uk/cansar/r cific enhancer Nucleus cytoplasm, ni MEF2 family <a href="http://cansar.icr.ac.uk/cansar/r Nucleus cytoplasm, nucleolus, nucle <a href="http://cansar.icr.ac.uk/cansar/r associated tur Mitochondric extracellular MTUS1 family <a href="http://cansar.icr.ac.uk/cansar/r cogene prote Nucleus, nucl cytosol, nucleolus, nucleop http://cansar.icr.ac.uk/cansar/r

>tor coactivat Nucleusintracellular, OXR1 family <a href="http://cansar.icr.ac.uk/cansar/r</th>r 1 A-typeNucleuscell junction, CTF/NF-I fam <a href="http://cansar.icr.ac.uk/cansar/r</td>cription facto NucleusCCAAT-bindir NFYC/HAP5 s <a href="http://cansar.icr.ac.uk/cansar/r</td>ition complex Nucleusactin cytoskel ORC4 family <a href="http://cansar.icr.ac.uk/cansar/r</td>

Cell membrar extracellular PA-phosphat; <a href="http://cansar.icr.ac.uk/cansar/r 3.1.3.4 Nucleus, Nuc cytoplasm, cytosol, early er <a href="http://cansar.icr.ac.uk/cansar/r 3.1.3.16 Cytoplasm, N chromosome PPP phosphai<a href="http://cansar.icr.ac.uk/cansar/r 2.7.11.11 Cytoplasm, Cycalcium chani AGC Ser/Thr i <a href="http://cansar.icr.ac.uk/cansar/r ocessing factc Nucleus spec cytoplasm, m PRPF40 family http://cansar.icr.ac.uk/cansar/r nucleoplasm, retinoblaston <a href="http://cansar.icr.ac.uk/cansar/r na-like proteii Nucleus 6.3.2.-Nucleus cytoplasm, cyRNF12 family <a href="http://cansar.icr.ac.uk/cansar/r Cell membrar axon, cell sur ROBO family <a href="http://cansar.icr.ac.uk/cansar/r nomolog 1 axolemma, cc ROBO family <a href="http://cansar.icr.ac.uk/cansar/r nomolog 2 Membrane l protein L11 Nucleus, nucl cytoplasm, cyribosomal prc <a href="http://cansar.icr.ac.uk/cansar/r transcription | Nucleus cytoplasm, nuclear chroma <a href="http://cansar.icr.ac.uk/cansar/r '1-binding pro Nucleus, Cytc cytoplasm, nucleoplasm <a href="http://cansar.icr.ac.uk/cansar/r 3.4.22.68 Nucleus cytoplasm, ni peptidase C4:<a href="http://cansar.icr.ac.uk/cansar/r Cytoplasm, cycytoplasm, cySHQ1 family <a href="http://cansar.icr.ac.uk/cansar/r homolog pathic helix prNucleus, Nuc cytoplasm, intercellular brir<a href="http://cansar.icr.ac.uk/cansar/r pathic helix pr Nucleus autosome, cytoplasm, nucl-<a href="http://cansar.icr.ac.uk/cansar/r nst decapenta Nucleus, Cytc centrosome, dwarfin/SMA <a href="http://cansar.icr.ac.uk/cansar/r ted matrix-as: Nucleus nBAF comple SNF5 family <a href="http://cansar.icr.ac.uk/cansar/r Nucleus, Cytc cytoplasm, ni Sp1 C2H2-typ <a href="http://cansar.icr.ac.uk/cansar/r factor Sp1 ise factor Nucleus cytoplasm, nuclear chroma <a href="http://cansar.icr.ac.uk/cansar/r < subunit SSRF Nucleus, Nuc chromosome SSRP1 family <a href="http://cansar.icr.ac.uk/cansar/r</pre> al adapter 3 Nucleus Ada2/Gcn5/ANGG1 family <a href="http://cansar.icr.ac.uk/cansar/r factor AP-2-a Nucleus centrosome, AP-2 family <a href="http://cansar.icr.ac.uk/cansar/r growth facto Cell junction, cytoplasm, cypaxillin family <a href="http://cansar.icr.ac.uk/cansar/r 2.3.2.23 cytoplasm, cyubiquitin-con <a href="http://cansar.icr.ac.uk/cansar/r Cytoplasm nscription fact Nucleus, nucl fibrillar center, nucleolus, n <a href="http://cansar.icr.ac.uk/cansar/r Nucleus, nucl cytoplasm, ni peptidase C1! <a href="http://cansar.icr.ac.uk/cansar/r 3.4.19.12 al repressor p Nucleus matr Ino80 comple YY transcripti <a href="http://cansar.icr.ac.uk/cansar/r factor YY2 Nucleus cytoplasm, ni YY transcripti <a href="http://cansar.icr.ac.uk/cansar/r d BTB domain Nucleus <a href="http://cansar.icr.ac.uk/cansar/r nucleus pox-binding h Nucleus cytoplasm, ni delta-EF1/ZFI <a href="http://cansar.icr.ac.uk/cansar/r meobox prot Nucleus, Cytc cytoplasm, intracellular me <a href="http://cansar.icr.ac.uk/cansar/r nd homeobox Nucleus nucleoplasm, ZHX family <a href="http://cansar.icr.ac.uk/cansar/r otein ZIC 3 Nucleus, Cytc cytoplasm, ni GLI C2H2-typi <a href="http://cansar.icr.ac.uk/cansar/r YM-type prote Nucleus cytoplasm, nucleoplasm <a href="http://cansar.icr.ac.uk/cansar/r

nearest drugn	umber of Enumbe	r of 3	number of c	number of c	ligand drugg	screened coi
100.00 P102	106	91	47	47	95	0
100.00 P150	60	57	50	51	93	1413
100.00 P033	193	182	105	105	94	5689
100.00 0153	1	0	0	0	93	1769
100.00 Q128	10	0	0	0	96	12236
100.00 Q027	41	41	38	39	92	1798
100.00 P041!	47	21	13	14	94	3419
100.00 P102	24	22	3	9	88	606
100.00 P108	24	22	5	9	94	567
100.00 P136	24	22	1	9	88	512
100.00 P197	83	60	43	47	89	812
32.41 01492	38	30	15	30	95	3479
nolecular-tarɛ̯	0	0	0	0	84	137
33.59 P4268	2	2	0	0	94	802
nolecular-tar	83	53	8	8	82	1426
72.23 P2781	75	72	37	70	95	2627
nolecular-tar	21	14	18	18	97	3777
nolecular-targ	2	2	2	2	96	1483
nolecular-targ	157	45	20	21	78	616
nolecular-tar	1	0	0	0	75	159
nolecular-tar	27	0	0	0	98	36
nolecular-tar	35	0	20	21	59	44
nolecular-tar	179	171	105	105	78	91
nolecular-tar	21	21	10	10	59	74
28.50 P2181	7	3	4	5	91	46
23.56 P2181	3	1	0	2	89	6
nolecular-tar	7	0	0	0	89	356
28.85 06067	0	0	0	0	70	136
nolecular-tarɛ̯	28	23	15	15	70	68
nolecular-tarɛ̯	8	1	0	0	78	38
nolecular-tarɛ̯	12	1	0	0	80	75
34.83 P1979:	17	9	15	15	83	8
nolecular-tar	42	2	5	5	84	192
nolecular-tarɛ̯	1	0	1	1	78	2
nolecular-tarɛ̯	4	0	1	1	66	
nolecular-tar	20	0	1	1	94	0
nolecular-tar	22	2	1	1	59	11
nolecular-tar	7	6	5	5	84	
nolecular-tar	2	0	0	0	84	0
nolecular-tar	8	0	1	2	73	

nolecular-tar	0	0	0	0	59	
32.23 06067	5	4	4	4	59	
nolecular-tar	10	0	4	4	83	
nolecular-tar	84	34	19	23	93	135
nolecular-tar	8	0	1	2	95	
nolecular-tar	0	0	0	0	97	
nolecular-tarɛ̯	9	0	0	0	67	48
nolecular-tarɛ̯	1	1	1	1	83	
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tarɛ̯	2	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tarɛ̯	8	0	0	0	91	7
nolecular-tarɛ̯	8	0	0	0	59	0
nolecular-tarɛ̯	5	0	1	1	59	0
nolecular-tarɛ̯	15	0	0	1	59	0
nolecular-tarɛ̯	16	0	1	1	59	0
nolecular-tar	4	0	2	2	59	
43.46 P1979	7	2	3	3	86	18
nolecular-tar	8	1	3	3	82	3
nolecular-tar	9	2	3	3	59	0
nolecular-tar	65	56	51	57	68	51
nolecular-tar	14	12	14	14	82	10
nolecular-tar	7	3	2	3	97	1
nolecular-tarɛ̯	5	3	1	3	93	1
nolecular-tarɛ̯	24	1	4	8	59	
nolecular-tarɛ̯	1	0	0	0	59	
nolecular-tar	1	0	0	0	59	
nolecular-tarɛ̯	3	0	1	1	59	
nolecular-tar	6	4	3	3	59	0
nolecular-tar	15	1	8	8	81	10
nolecular-tar	1	0	1	1	59	
nolecular-tar	3	0	0	1	68	
nolecular-tarɛ̯	9	0	1	2	59	3
nolecular-tar	12	0	2	3	59	3
nolecular-tar	7	0	2	2	59	0
nolecular-tar	8	3	1	2	86	48
nolecular-tar	2	0	0	0	59	
nolecular-tar	15	0	1	1	59	
nolecular-tar	4	0	0	1	59	
nolecular-tar	4	0	1	1	59	
nolecular-tar	1	0	1	1	63	
nolecular-tar	22	0	7	9	59	
nolecular-targ	2	0	0	0	59	0
nolecular-tar	2	0	0	0	73	

nolecular-tarɛ	0	0	0	0	59	
nolecular-tarɛ	0	0	0	0	59	
nolecular-tarɛ	2	0	0	0	59	
nolecular-tarɛ	121	9	4	4	87	424
nolecular-tarɛ̯	3	0	0	0	91	
nolecular-tarɛ̯	0	0	0	0	71	
nolecular-tarɛ̯	1	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	71	
nolecular-tarɛ̯	0	0	0	0	89	2
nolecular-tarɛ̯	6	0	2	2	72	
nolecular-tarɛ̯	1	0	0	0	71	
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tarɛ̯	2	0	0	1	59	
nolecular-tar	3	0	0	0	59	
nolecular-tarɛ̯	12	0	0	0	88	
nolecular-tarɛ̯	4	0	0	0	59	
nolecular-tarɛ̯	4	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	0
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tarɛ̯	3	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	75	
nolecular-tarɛ̯	10	0	0	0	91	3
nolecular-tarɛ̯	1	0	0	0	59	
nolecular-tarɛ̯	2	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	
nolecular-tar _{	0	0	0	0	59	
nolecular-tar _{	1	0	0	0	59	
nolecular-tar _{	218	65	3	3	59	
nolecular-tar _{	0	0	0	0	63	
27.64 P0851 [,]	6	3	3	3	93	1660
nolecular-tar _{	3	1	1	1	59	25
nolecular-tar	0	0	0	0	86	
nolecular-tar	0	0	0	0	59	
nolecular-tar _{	0	0	0	0	59	0
nolecular-tar	0	0	0	0	59	0
nolecular-tar _{	9	1	0	0	59	
nolecular-tar	5	0	0	0	59	0
nolecular-tarɛ	0	0	0	0	72	
nolecular-tar	7	0	0	0	59	36
nolecular-tar	0	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	60	
nolecular-tarɛ̯	3	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	

nolecular-tar _{	0	0	0	0	59	
nolecular-tar _{	5	0	0	0	59	0
nolecular-tar _{	16	6	1	1	65	59
29.29 01492	188	158	162	162	84	1931
nolecular-tarɛ̯	10	0	0	0	95	
nolecular-tarɛ̯	4	0	0	0	73	
nolecular-tarɛ̯	0	0	0	0	90	
29.41 P1136	6	0	0	0	85	
26.75 P2180	6	0	0	0	59	
nolecular-tarɛ̯	2	0	0	0	75	
nolecular-tarɛ̯	23	0	0	0	59	1
nolecular-tarɛ̯	2	0	0	0	59	
nolecular-tarɛ̯	0	0	0	0	59	0
nolecular-tarɛ̯	3	0	0	0	59	
nolecular-tarɛၘ	9	0	0	0	84	
nolecular-tarɛၘ	8	0	0	0	71	
nolecular-tarɛ̯	7	0	0	0	59	
nolecular-tarɛၘ	1	0	0	0	59	0
nolecular-tarɛၘ	5	0	0	0	59	37
nolecular-tarɛၘ	3	0	0	0	59	
nolecular-tarɛၘ	1	0	0	0	59	
nolecular-tarɛၘ	0	0	0	0	59	
nolecular-tar	0	0	0	0	59	
nolecular-tarɛၘ	0	0	0	0	59	
nolecular-tarɛၘ	53	0	0	3	64	
nolecular-tarɛ	7	0	0	0	59	
nolecular-tar	2	0	0	0	72	1
nolecular-tarɛ	3	1	0	0	59	
nolecular-tarɛ	1	0	0	0	59	
nolecular-tar	2	0	0	0	59	
nolecular-tar	1	0	0	0	91	
nolecular-tarɛၘ	4	0	0	0	68	
nolecular-tar _ễ	4	0	0	0	59	
nolecular-tar _ễ	2	0	0	0	59	
nolecular-tar _{	0	0	0	0	63	

0	
323	
864	
312	
357	
251	
1345	
101	
115	
81	
184	
605	
2	
141	
326	
600	
8/3	
359	
44	
21	
1	
1	
7	
19	
2	
14	
2	
- 13	
14	
27	
1	
67	
1	
0	
0	
0	

screened_compounds_active at 50 nM or better

UniprotAccesstion Gene Symbol	Uniprot accedssion of the main gene product HUGO gene Symbol
Source	The surce of the protein in the networ: input_list: prot
Subcellular_localisation	Summary term indicating main subcellular localisation
long_name	Full name of protein
node_label	Label as shown in the network
Druggability_Class	Druggability class: DT: Target of approved drug; CT: Tar
protein	Protein product symbol
Synonyms	Other synomyms
Transcriptional_class	For transcription factors, subclassificaton
description	Full description of prorein product
ec_number	For enzymes, the Enzyme Classification
location	Expanded detail of subcellular localisation
go_terms	Gene Ontology terms
family	Protein family
cansar_link	Link to live report in canSAR for this protein
nearest_drug_target	List of closest homologous drug targets
number_of_3d_structure within 75% hor	The number of 3D structures within 75% homology.
number_of_3d_structure_with_small_me	The number of 3D protein stryctures that have been sc
number_of_druggable_3d_structures wit	The number of druggable structures identified in canSA
number_of_druggable_3d_structures wit	The number of druggable structures identified in canSA
ligand_druggability_percentile_rank	Rank of druggability based on chemical information alc
screened_compounds	The number of published compouneds tested

screened_compounds_active at 50 nM or The number of published compounds showing 50nM a

ein product of gene identified as a key altered gene in this study; additional_connectivity: key di

'get of drug under clinical investgation; AC: Target of compound in preclinical or discovery phase

Noted in complex with a small molecule ligand - this could be either a cofactor or inhibitor AR that are within 90% homology of the protein - this is in effect direct evidence for the protein c AR that are within 75% homology of the protein - this is a sufficiently close homology that the dru one - 10% indicates it is in the top most druggable proteins based on chemical rather than protein

ctivity or better

rect interacting protein; additional_enriched: key enriched transcription factor (see online meth-

exploration; Dr: none of the above but predicted druggable using canSAR

containing a druggable cavity Jggability mapping by homology is highly reliable n structure information ods)

Cell Line		
22RV	Drug and targets	22RV
22RV	AKT inhibitor VIII Target: AKT1, AKT2, AKT3	-1.03
22RV	AS605240 Target: PI3Kgamma	ns
22RV	AZD6482 Target: PI3Kbeta	ns
22RV	AZD8055 Target: MTORC1, MTORC2	-0.23
BPH-1	CP466722 Target: ATM	-0.30
BPH-1	Dactolisib Target: PI3K (Class 1) MTORC1 MTORC2	-0.43
BPH-1	GSK600693 Target: AKT1_AKT2_AKT3	ns
	Idelalisib Target: PI3Kdelta	ne
	KIL 55022 Target: ATM	115
DU-145	NU-55955 Talgel, ATM	115
	MR-2200 Target. ARTT, ARTZ	
LNCaP-Clone-FGC		-0.84
LNCaP-Clone-FGC	Omipalisib Target: PI3K (class 1), MTORC1, MTORC2	ns
LNCaP-Clone-FGC	OSI-027 Target: MTORC1, MTORC2	ns
LNCaP-Clone-FGC	PI-103 Target: PI3Kalpha, DAPK3, CLK4, PIM3, HIPK2	ns
LNCaP-Clone-FGC	Pictilisib Target: PI3K (class 1)	ns
LNCaP-Clone-FGC	PIK-93 Target: PI3Kgamma	ns
LNCaP-Clone-FGC	Serdemetan Target: MDM2	ns
LNCaP-Clone-FGC	ZSTK474 Target: PI3K (class 1)	ns
LNCaP-Clone-FGC		
LNCaP-Clone-FGC		
LNCaP-Clone-FGC		
I NCaP-Clone-EGC		
	Data from the Genomics of Drug Sensitivity in Cancer (Given values are shown as z-scores for drugs that act on target prostate cancer cell lines in GDSC.	DSC)- public c s within the Pc
LNCaP-Clone-FGC		
PC-3		

Cell line, Sensitivity in Z-score					
BPH-1	DU-145	Clone-FGC	PC-3	PWR-1E	VCAP
-1.07	ns	-1.17	-0.36	ns	-1.00
ns	ns	ns	ns	ns	-0.99
ns	ns	-1.46	ns	-0.28	ns
ns	ns	-0.78	-0.33	ns	ns
-0.31	ns	-0.54	ns	ns	-0.58
ns	ns	-0.63	-2.14	ns	ns
ns	ns	-3.31	-0.56	ns	-1.48
ns	ns	-2.07	ns	ns	ns
-0.21	-2.56	ns	-0.60	-0.60	-0.11
ns	-1.28	-1.44	-0.42	ns	ns
-0.41	ns	-1.86	ns	ns	ns
ns	ns	-0.63	-0.30	ns	-1.36
ns	ns	-1.22	-1.17	ns	-0.27
ns	ns	ns	-0.82	ns	-1.12
ns	ns	-0.91	-0.51	-0.18	ns
ns	ns	-0.20	-0.59	ns	-0.61
ns	ns	-2.33	ns	ns	-1.68
ns	ns	ns	-0.70	ns	-1.14
not sensitive			marginal		sensitive

lataset provided by the Sanger Institute (http://www.cancerrxgene.org). Sensitivity a druggable disease network identified in our study, and that have been tested on

fig1_order fig2	_order Sanger ID	ICGC sample ID	ICGC Donor ID
1	62 PD12337a	0096_CRUK_PC_0096_M1	0096_CRUK_PC_0096
2	61 PD11335a	0022_CRUK_PC_0022_M1	0022_CRUK_PC_0022
3	59 PD13412a	0095_CRUK_PC_0095_M1	0095_CRUK_PC_0095
4	54 PD11330a	0017_CRUK_PC_0017_M1	0017_CRUK_PC_0017
5	60 PD11328a	0015_CRUK_PC_0015_M1	0015_CRUK_PC_0015
6	56 PD11332a	0019_CRUK_PC_0019_M1	0019_CRUK_PC_0019
7	53 PD11329a	0016 CRUK PC 0016 M1	0016_CRUK_PC_0016
8	58 PD11334a	0021 CRUK PC 0021 M1	0021 CRUK PC 0021
9	57 PD11333a	0020 CRUK PC 0020 M1	0020 CRUK PC 0020
10	55 PD11331a	0018 CRUK PC 0018 M1	0018 CRUK PC 0018
11	74 PD12843a	0060 CRUK PC 0060 T1	0060 CRUK PC 0060
12	63 PD14722a	0098 CRUK PC 0098 M1	0098 CRUK PC 0098
13	65 PD14731a	0107 CRUK PC 0107 M1	0107 CRUK PC 0107
14	5 PD12845a	0062 CRUK PC 0062 T1	0062 CRUK PC 0062
15	50 PD14728a	0104 CRUK PC 0104 M1	0104 CRUK PC 0104
16	85 PD12812a	0029 CRUK PC 0029 T1	0029 CRUK PC 0029
17	86 PD13380a	0063 CRUK PC 0063 T1	0063 CRUK PC 0063
18	23 PD12808a	0025 CRUK PC 0025 T1	0025 CRUK PC 0025
19	46 PD14721a	0097 CRUK PC 0097 M1	0097 CRUK PC 0097
20	25 PD13411a	0094 CRUK PC 0094 T1	0094 CRUK PC 0094
21	30 PD13388a	0071 CRUK PC 0071 T1	0071 CRUK PC 0071
22	47 PD14724a	0100 CRUK PC 0100 M1	0100 CRUK PC 0100
22	67 PD13408a	0091 CRUK PC 0091 T1	0091 CRUK PC 0091
23	78 PD12844a	0061 CRUK PC 0061 T1	0061 CRUK PC 0061
25	51 PD14729a	0105 CRUK PC 0105 M1	0105 CRUK PC 0105
25	45 PD147230	0110 CRUK PC 0110 T1	0110 CRUK PC 0110
20	18 PD97/6a	0009 CRUK PC 0009 T1	0009 CRIJK PC 0009
27	71 PD12817a	0009_CRUK_PC_0034_T1	0034 CRUK PC 0034
20	102 PD13381a	0064 CBUK PC 0064 T1	
30	87 PD13305a		0078 CRUK PC 0078
30		0102 CRUK PC 0102 M1	0102 CRUK PC 0102
37	103 PD13387a	0102_CRUK_PC_0102_W1	0102_CRUK_FC_0102
32	60 PD13811a	0028 CRUK PC 0028 T1	0005_CRUK_FC_0005
24		0012 CRUK PC 0012 T1	0028_CRUK_FC_0028
25			
36	17 PD128428	0039_CNUK_PC_0039_11	00000000000000000000000000000000000000
30	17 PD14700a		
20			0122 CRUK PC 0122
20	109 FD14714a		
59	100 PD12636d	0033_CRUK_PC_0035_11	00000_CRUK_PC_00000
40	00 DD14730a	0100_CRUK_PC_0100_M1	0100_CRUK_PC_0100
41	90 PD14713a	0120_CRUK_PC_0120_11	0120_CRUK_PC_0120
42	40 PU133943	0102 CRUK DC 0102 M41	0102 CRUK_PC_00/7
43 11	47 FU14/2/3		
44	92 PD128103	$0027_CKUK_PC_0027_11$	
45	00 PD12403		
40	88 PD134028	0052 CRUK_PC_0085_11	
47	13 PD128369	0053_CKUK_PC_0053_11	0053_CKUK_PC_0053

48	73	PD9169a	0005_CRUK_PC_0005_T1	0005_CRUK_PC_0005
49	6	PD9168a	0004_CRUK_PC_0004_T1	0004_CRUK_PC_0004
50	9	PD12835a	0052_CRUK_PC_0052_T1	0052_CRUK_PC_0052
51	15	PD13401a	0084_CRUK_PC_0084_T1	0084_CRUK_PC_0084
52	77	PD12824a	0041_CRUK_PC_0041_T1	0041_CRUK_PC_0041
53	98	PD12828a	0045 CRUK PC 0045 T1	0045 CRUK PC 0045
54	8	PD12814a	0031 CRUK PC 0031 T1	0031 CRUK PC 0031
55	99	PD12837a	0054 CRUK PC 0054 T1	0054 CRUK PC 0054
56	110	PD14718a	0126 CRUK PC 0126 T1	0126 CRUK PC 0126
57	76	PD13407a	0090 CRUK PC 0090 T1	0090 CRUK PC 0090
58	34	PD12820a	0037 CRUK PC 0037 T1	0037 CRUK PC 0037
59	11	PD12813a	0030 CRUK PC 0030 T1	0030 CRUK PC 0030
60	72	PD12834a	0051 CRUK PC 0051 T1	0051 CRUK PC 0051
61	111	PD14720a	0128 CRUK PC 0128 T1	0128 CRUK PC 0128
62		PD13387a	0070 CRUK PC 0070 T1	0070 CRUK PC 0070
63	82	PD12840a	0057 CRUK PC 0057 T1	0057 CRUK PC 0057
64	22	PD13389a	0072 CRUK PC 0072 T1	0072 CRUK PC 0072
65	10	PD14707a	0114 CRUK PC 0114 T1	0114 CRUK PC 0114
66	32	PD1//716a	0124 CRUK PC 0124 T1	0124 CRUK PC 0124
67	24	PD12829a	00124_CRUK_PC_00124_T1	
68	20	D120250	0070_CRUK_PC_0070_T1	
60	36	D128222	00/9_CRUK_PC_00/9_T1	0049 CBUK PC 0049
70	50	D12052a	0045_CRUK_FC_0045_T1	0127 CRUK PC 0127
70	25	DD128252	0127_CRUK_FC_0127_T1	
71			0042_CRUK_FC_0042_T1	
72	105	DD122025	0014_CRUK_FC_0014_T1	
75	102		0070_CRUK_PC_0070_T1	0070_CRUK_PC_0070
74	45	DD120062	0123_CRUK_PC_0123_T1	
75	4 00		0025_CRUK_PC_0025_T1	
70	05	PD13403a	0000_CRUK_PC_0000_T1	
77	04 40		0024_CRUK_PC_0024_T1	0101 CRUK PC_0024
78	48	PD14725a		
79	/5	PD133838	0006_CRUK_PC_0066_T1	0066_CRUK_PC_0066
80	3	PD12821a	0038_CRUK_PC_0038_T1	0038_CRUK_PC_0038
81	108	PD14709a	0116_CRUK_PC_0116_11	0116_CRUK_PC_0116
82	81	PD13406a	0089_CRUK_PC_0089_11	0089_CRUK_PC_0089
83	29	PD14735a	0111_CRUK_PC_0111_11	0111_CRUK_PC_0111
84	21	PD12818a	0035_CRUK_PC_0035_T1	0035_CRUK_PC_0035
85	16	PD13404a	008/_CRUK_PC_008/_I1	0087_CRUK_PC_0087
86	NA	PD6204a	0001_CRUK_PC_0001_T1	0001_CRUK_PC_0001
87	38	PD13391a	0074_CRUK_PC_0074_T1	0074_CRUK_PC_0074
88	1	PD14736a	0112_CRUK_PC_0112_T1	0112_CRUK_PC_0112
89	2	PD13399a	0082_CRUK_PC_0082_T1	0082_CRUK_PC_0082
90	80	PD14711a	0118_CRUK_PC_0118_T1	0118_CRUK_PC_0118
91	33	PD12819a	0036_CRUK_PC_0036_T1	0036_CRUK_PC_0036
92	31	PD13410a	0093_CRUK_PC_0093_T1	0093_CRUK_PC_0093
93	104	PD13390a	0073_CRUK_PC_0073_T1	0073_CRUK_PC_0073
94	28	PD14708a	0115_CRUK_PC_0115_T1	0115_CRUK_PC_0115
95	40	PD13409a	0092_CRUK_PC_0092_T1	0092_CRUK_PC_0092
96	27	PD12822a	0039_CRUK_PC_0039_T1	0039_CRUK_PC_0039
97	26	PD12831a	0048_CRUK_PC_0048_T1	0048_CRUK_PC_0048

98	112 PD14732a	0108_CRUK_PC_0108_T1	0108_CRUK_PC_0108
99	93 PD12841a	0058_CRUK_PC_0058_T1	0058_CRUK_PC_0058
100	91 PD13384a	0067_CRUK_PC_0067_T1	0067_CRUK_PC_0067
101	107 PD13398a	0081_CRUK_PC_0081_T1	0081_CRUK_PC_0081
102	95 PD12816a	0033_CRUK_PC_0033_T1	0033_CRUK_PC_0033
103	41 PD14710a	0117_CRUK_PC_0117_T1	0117_CRUK_PC_0117
104	37 PD13386a	0069_CRUK_PC_0069_T1	0069_CRUK_PC_0069
105	42 PD14712a	0119_CRUK_PC_0119_T1	0119_CRUK_PC_0119
106	94 PD12815a	0032_CRUK_PC_0032_T1	0032_CRUK_PC_0032
107	44 PD14733a	0109_CRUK_PC_0109_T1	0109_CRUK_PC_0109
108	20 PD13392a	0075_CRUK_PC_0075_T1	0075_CRUK_PC_0075
109	97 PD12826a	0043_CRUK_PC_0043_T1	0043_CRUK_PC_0043
110	14 PD13400a	0083_CRUK_PC_0083_T1	0083_CRUK_PC_0083
111	96 PD12823a	0040_CRUK_PC_0040_T1	0040_CRUK_PC_0040
112	106 PD13397a	0080_CRUK_PC_0080_T1	0080_CRUK_PC_0080

PELICAN ID	EGA Accession	Source
A21-19888-LRib5MassMet	EGAN00001202474	PELICAN
A34-19956-LiverMet3	EGAN00001202462	PELICAN
A17-20205-Abd Paraaortic LN Met	EGAN00001202468	PELICAN
A29-19932-RSuperficialInguinalLNMetA1	EGAN00001202438	PELICAN
A10-19916-RIliacLNMet	EGAN00001202422	PELICAN
A32-19941-RRib8Met1-11	EGAN00001202447	PELICAN
A22-19921-LHumerusBoneMarrowMet	EGAN00001202427	PELICAN
A24-19951-RAxillaryLNMet	EGAN00001202457	PELICAN
A12-19947-MediastinalLNMet	EGAN00001202453	PELICAN
A31-19935-RSubduralMet	EGAN00001202441	PELICAN
	EGAN00001250305	NDS (Oxford)
PB133-20219-NAD Pelvic LN MET	EGAN00001375298	PELICAN
PB635-20237-NAD Pelvic LN Met	EGAN00001375314	PELICAN
	EGAN00001250309	NDS (Oxford)
PB421-20231-NAD Pelvic LN MET	EGAN00001375308	PELICAN
	EGAN00001250247	ICR (Sutton)
	EGAN00001250311	CRI (Cambridge)
	EGAN00001250239	ICR (Sutton)
PB50-20217-NAD Pelvic LN MET	EGAN00001375296	PELICAN
	EGAN00001195729	ICR (Sutton)
	EGAN00001195703	CRI (Cambridge)
PB273-20223-NAD Pelvic LN MET	EGAN00001375300	PELICAN
	EGAN00001195725	ICR (Sutton)
	EGAN00001250307	NDS (Oxford)
PB522-20233-NAD Pelvic LN MET	EGAN00001375310	PELICAN
	EGAN00001250367	ICR (Sutton)
	EGAN00001250379	Shanghai
	EGAN00001250257	ICR (Sutton)
	EGAN00001195693	CRI (Cambridge)
	EGAN00001195711	CRI (Cambridge)
PB399-20227-NAD Pelvic LN MET	EGAN00001375304	PELICAN
	EGAN00001195695	CRI (Cambridge)
	EGAN00001250245	ICR (Sutton)
	EGAN00001250381	Shanghai
	EGAN00001250303	CRI (Cambridge)
	EGAN00001250335	CRI (Cambridge)
	EGAN00001250283	ICR (Sutton)
	EGAN00001250351	CRI (Cambridge)
	EGAN00001250297	CRI (Cambridge)
PB556-20235-NAD Pelvic LN Met	EGAN00001375312	PELICAN
	EGAN00001250349	CRI (Cambridge)
	EGAN00001195709	CRI (Cambridge)
PB402-20229-NAD Pelvic LN MET	EGAN00001375306	PELICAN
	EGAN00001250243	ICR (Sutton)
	EGAN00001250241	ICR (Sutton)
	EGAN00001250327	ICR (Sutton)
	EGAN00001250293	CRI (Cambridge)

EGAN00001250377 Shanghai EGAN00001250375 Shanghai EGAN00001250291 CRI (Cambridge) EGAN00001195717 ICR (Sutton) EGAN00001250271 ICR (Sutton) EGAN00001250279 ICR (Sutton) EGAN00001250251 ICR (Sutton) EGAN00001250295 CRI (Cambridge) EGAN00001250357 CRI (Cambridge) EGAN00001195723 ICR (Sutton) EGAN00001250263 ICR (Sutton) EGAN00001250249 ICR (Sutton) EGAN00001250289 CRI (Cambridge) EGAN00001250361 CRI (Cambridge) EGAN00001195701 CRI (Cambridge) EGAN00001250299 CRI (Cambridge) EGAN00001195705 CRI (Cambridge) EGAN00001250337 CRI (Cambridge) EGAN00001250353 CRI (Cambridge) EGAN00001250281 ICR (Sutton) EGAN00001250321 CRI (Cambridge) EGAN00001250287 ICR (Sutton) EGAN00001250359 CRI (Cambridge) EGAN00001250273 ICR (Sutton) EGAN00001250383 Shanghai EGAN00001250319 CRI (Cambridge) EGAN00001250355 CRI (Cambridge) EGAN00001250235 ICR (Sutton) EGAN00001250331 ICR (Sutton) EGAN00001250237 ICR (Sutton) EGAN00001375302 PELICAN EGAN00001250313 CRI (Cambridge) EGAN00001250265 ICR (Sutton) EGAN00001250341 CRI (Cambridge) EGAN00001195721 ICR (Sutton) EGAN00001250369 ICR (Sutton) EGAN00001250259 ICR (Sutton) EGAN00001250329 ICR (Sutton) EGAN00001250373 ICR (Sutton) EGAN00001250317 CRI (Cambridge) EGAN00001250371 ICR (Sutton) EGAN00001195715 ICR (Sutton) EGAN00001250345 CRI (Cambridge) EGAN00001250261 ICR (Sutton) EGAN00001195727 ICR (Sutton) EGAN00001250315 CRI (Cambridge) EGAN00001250339 CRI (Cambridge) EGAN00001250333 ICR (Sutton) EGAN00001250267 ICR (Sutton) EGAN00001250285 ICR (Sutton)

PB344-20225-NAD Pelvic LN MET
EGAN00001250363
 ICR (Sutton)

 EGAN00001250301
 CRI (Cambridge)

 EGAN00001195697
 CRI (Cambridge)

 EGAN00001250323
 CRI (Cambridge)

 EGAN00001250325
 ICR (Sutton)

 EGAN00001250343
 CRI (Cambridge)

 EGAN00001250343
 CRI (Cambridge)

 EGAN00001250343
 CRI (Cambridge)

 EGAN00001250347
 CRI (Cambridge)

 EGAN00001250347
 CRI (Cambridge)

 EGAN00001250353
 ICR (Sutton)

 EGAN00001250354
 ICR (Sutton)

 EGAN00001250355
 ICR (Sutton)

Sample type	Sample organ	Age at tumour collection
adt-met	left rib 5	70
adt-met	liver	66
adt-met	abdominal paraaortic lymph node	64
adt-met	right superficial inguinal lymph node	82
adt-met	right iliac lymph node	74
adt-met	right rib 8	72
adt-met	left humerus bone marrow	48
adt-met	right axillary lymph node	69
adt-met	mediastinal lymph node	68
adt-met	right subdural	67
primary	Prostate	88
non-adt-met	Pelvic Lymph Node	70
non-adt-met	Pelvic Lymph Node	64
primary	Prostate	83
non-adt-met	Pelvic Lymph Node	66
primary	Prostate	55
primary	Prostate	68
primary	Prostate	67
non-adt-met	Pelvic Lymph Node	69
primary	Prostate	59
primary	Prostate	61
non-adt-met	Pelvic Lymph Node	53
primary	Prostate	65
primary	Prostate	70
non-adt-met	Pelvic Lymph Node	56
primary	Prostate	64
primary	Prostate	74
primary	Prostate	72
primary	Prostate	59
primary	Prostate	66
non-adt-met	Pelvic Lymph Node	65
primary	Prostate	61
primary	Prostate	68
primary	Prostate	70
primary	Prostate	63
primary	Prostate	62
primary	Prostate	70
primary	Prostate	66
primary	Prostate	57
non-adt-met	Pelvic Lymph Node	65
primary	Prostate	52
primary	Prostate	66
non-adt-met	Pelvic Lymph Node	56
primary	Prostate	68
primary	Prostate	66
primary	Prostate	61
primary	Prostate	63

primary	Prostate	61
primary	Prostate	65
primary	Prostate	57
primary	Prostate	61
primary	Prostate	65
primary	Prostate	68
primary	Prostate	67
primary	Prostate	69
primary	Prostate	68
primary	Prostate	71
primary	Prostate	50
primary	Prostate	72
primary	Prostate	68
primary	Prostate	73
primary	Prostate	58
primary	Prostate	66
primary	Prostate	61
primary	Prostate	53
primary	Prostate	66
primary	Prostate	59
primary	Prostate	55
primary	Prostate	56
primary	Prostate	61
primary	Prostate	59
primary	Prostate	74
primary	Prostate	59
primary	Prostate	63
primary	Prostate	61
primary	Prostate	57
primary	Prostate	71
non-adt-met	Pelvic Lymph Node	60
primary	Prostate	70
primary	Prostate	64
primary	Prostate	62
primary	Prostate	73
primary	Prostate	50
primary	Prostate	56
primary	Prostate	63
primary	Prostate	61
primary	Prostate	54
primary	Prostate	62
primary	Prostate	54
primary	Prostate	62
primary	Prostate	65
primary	Prostate	63
primary	Prostate	60
primarv	Prostate	55
primary	Prostate	66
primary	Prostate	68
primarv	Prostate	58
· · · ·		

primary	Prostate	56
primary	Prostate	60
primary	Prostate	66
primary	Prostate	51
primary	Prostate	68
primary	Prostate	54
primary	Prostate	64
primary	Prostate	57
primary	Prostate	65
primary	Prostate	66
primary	Prostate	49
primary	Prostate	57
primary	Prostate	65
primary	Prostate	60
primary	Prostate	44

PSA at tumour collection	Gleason	Pathological t stage	Biochemical recurrence	
	99 5+4	ТД		
	55 514	17		
	40 5+4	T4		
	8.5 4+3	T2		1
	10.6 4+3	T3		0
	6.7 4+5	13		0
	10.9 3+4	тз		1
	16.8 3+4	T3		1
	16.2 4+3	Т3		1
	107 5+4	Т3		
				_
	5.8 3+4	T3		1
	51.1 3+4	12 T2		0
	12 3+4	T3		0
	8.6 3+4	T3		1
	12.8 3+4	Т3		0
	5 3+4	Т3		1
	35.7 3+4	T2		0
	15.1 3+4 6 97 2 4	13 T2		0
	0.8/3+4 71/+3	13 T2		U T
	8.38 4+3	T3		0
	4.5 4+3	T3		1
	7 4+3	T2		0
	7 3+5	Т3		1
	10 2 2 2	TO		
	18.3 3+3	13 T2		1
	11 3+1	12 T2		1 1
	8.5 3+4	T3		1
				-

9.27 4+3	T2	0
7.38 3+4	T2	0
6 3+3	Т3	0
7.5 3+4	Т3	0
7.2 4+3	T2	1
10.4 3+4	Т3	0
8.2 3+4	T2	0
15.8 3+3	Т3	0
7.07 4+3	Т3	0
11 3+4	Т3	1
8.9 3+4	Т2	0
8.65 4+3	Т2	0
4.8 4+3	Т3	1
5.83 3+4	Т2	0
5.75 3+4	Т3	0
9.7 3+4	Т3	0
5.4 3+4	Т3	1
13 4+3	Т2	0
5.63 3+3	Т3	0
17 4+3	Т3	0
6.1 3+4	Т2	0
9.1 3+4	Т2	0
7.63 3+4	Т3	0
12.4 3+4	Т2	0
97 4+3	Т2	0
7.3 3+4	Т3	0
9.61 3+4	Т3	0
7.8 3+4	T2	1
11.4 3+4	T2	0
10.7 3+4	Т3	0
20.74 3+5	T2	0
3.8 3+4	Т3	0
11.13 3+4	Т3	0
13.6 4+3	T2	0
10.31 3+4	Т3	0
7.25 4+3	Т3	1
8.6 3+4	T2	0
6.9 3+4	Т2	0
6.07 3+4	Т3	0
4 3+4	Т3	0
42.83 4+3	Т3	1
8.8 4+3	Т3	1
11.9 3+3	T2	0
7.8 3+4	T2	0
6.3 3+4	Т3	1
7 3+4	Т3	0
12.1 4+3	Т3	1
5.43 4+3	Т3	0
10 4+3	Т3	1

5.2 3+	⊦4 T2	0
11.9 3+	⊦4 T3	0
10.3 3+	⊦4 T3	0
8.3 3+	⊦4 T2	0
3.2 3+	⊦4 T2	0
7.1 3+	⊦4 T3	0
7.57 3+	⊦4 T3	0
5.4 3+	⊦4 T3	0
8 3+	⊦4 T2	1
28 3+	⊦4 T3	0
93+	⊦4 T3	0
5.9 3+	⊦4 T2	0
7.8 3+	⊦4 T3	0
7.7 3+	⊦4 T2	0
4.3 3+	+3 T3	0

Follow up	Sequence coverage	Cellularity	Ploidy	ETS positive	Battenberg status
	31.168	0.8879469	2.6129	no	yes
	55.6349	0.794	2.1832	no	yes
	56.2832	0.8976817	2.1898	yes	yes
	60.873	0.327	4.9185	yes	yes
	72.0131	0.93	2.2937	no	yes
	55.7188	0.824	3.8892	yes	yes
	63.8777	0.8	2.804	yes	yes
	70.0629	0.753	2.1154	yes	yes
	53.8279	0.772	2.3603	yes	yes
	54.3952	0.896	3.9017	yes	yes
	68.2543	0.1327743	4.4868	no	yes
	69.3941	0.6562474	2.482	no	yes
	57.8208	0.6227155	3.8177	no	yes
	62.7755	0.7075184	4.1396	yes	yes
	63.7608	0.5190688	1.99	yes	yes
231	57.5147	0.6299532	2.1753	no	yes
1246	49.4257	0.81098	2.332	no	yes
1596	81.5937	0.7315538	2.0555	yes	yes
	50.8255	0.7068444	3.8775	yes	yes
1240	103.611	0.2282811	3.3818	yes	yes
42	56.2595	0.7146315	2.0582	yes	yes
	68.2616	0.7575697	3.8226	yes	yes
461	54.8458	0.8876603	2.6087	no	yes
	56.0296	0.7863649	4.2441	no	yes
	56.8823	0.3518549	3.7638	yes	yes
982	58.4852	0.6130416	2.4175	yes	yes
1503	46.5969	0.3269423	3.9782	yes	yes
1568	75.8161	0.6947852	2.3655	no	yes
861	54.8251	0.4886241	2.1483	no	yes
139	48.833	0.2928916	2.4505	no	yes
	88.0622	0.7522268	1.9434	no	yes
1092	47.9624	0.5435194	2.1736	no	yes
1108	66.0939	0.6430273	1.9862	no	yes
3102	48.1899	0.5504923	2.1605	no	yes
1281	71.0824	0.54395	2.0972	no	yes
639	63.7698	0.6309904	2.2266	yes	yes
1282	55.8186	0.5664677	1.9983	yes	yes
1042	63.1209	0.3536998	2.1131	no	yes
98	57.2926	0.3979055	2.3503	no	yes
	61.7085	0.6257645	3.966	yes	yes
1567	67.4508	0.8243116	1.922	no	yes
53	55.3672	0.6742534	2.1377	no	yes
	65.0003	0.4602516	4.2688	yes	yes
1988	61.7287	0.4855316	2.1614	no	yes
1192	65.272	0.5514199	2.142	no	yes
725	60.2786	0.7430892	2.1295	no	yes
1732	56.7202	0.3411305	4.2647	yes	yes

1703	49.5837	0.8253155	2.249	no	yes
1485	46.2282	0.3846632	5.0003	yes	yes
2410	60.3372	0.5061917	2.0067	yes	yes
1103	98.7059	0.5693289	2.0877	yes	yes
455	49.0305	0.6237579	2.5298	no	yes
1435	76.8805	0.5132007	3.8533	no	yes
1605	78.7609	0.8038008	2.0895	yes	yes
1694	57.1343	0.4592892	2.1574	no	yes
962	66.1064	0.57163	2.1208	no	yes
610	60.1169	0.2768668	2.2644	no	yes
1336	65.1874	0.5866868	2.1763	yes	yes
1478	70.0784	0.5939939	2.0956	yes	yes
2395	69.3372	0.5405621	2.2087	no	yes
949	60.1544	0.2859	2.3336	no	ves
1029	51.2779	0.6461844	2.0507	yes	ves
1370	60.462	0.6957791	2.1585	, no	ves
931	48.978	0.5814945	2.1414	ves	ves
1154	55.7188	0.5405533	2.1403	, ves	ves
1009	61.0135	0.6229427	2.0737	ves	ves
1373	69.5849	0.6335656	2.0119	ves	ves
1351	82.082	0.6003663	2.0062	ves	ves
910	69.1117	0.5525659	2.1295	ves	ves
1000	61.5416	0.532787	2.0207	ves	ves
2226	56.837	0.246433	2.788	ves	ves
5	49.384	0.5004422	2.2818	no	ves
1281	63.9073	0.52523	2.1076	no	ves
821	63.5043	0.6283428	2.0392	ves	ves
711	59.0325	0.8284161	2.0282	ves	ves
692	57.1309	0.7711552	2.1273	no	ves
409	60.2388	0.5998768	2.0839	no	ves
	70.1226	0.6600904	2.0513	ves	ves
1207	57.9645	0.4302704	2.4245	no	ves
2048	53.9335	0.5288179	2.0402	ves	ves
1063	65.5659	0.2962172	2.5969	no	ves
857	56,2484	0.729429	2.0892	no	ves
722	54.2026	0.5492461	2.0896	ves	ves
955	56.6229	0.4112793	2.0381	ves	ves
1045	60.2229	0.6117868	2.0872	ves	ves
2198	27.2141	0.48167	2.2952	no	ves
1317	57.8395	0.1895289	2.615	ves	ves
540	55.5093	0.5191865	1.9407	ves	ves
68	51.7051	0.5805523	2.0717	ves	ves
614	59,7155	0.6382734	2.1451	no	yes
3327	78,7577	0.100931	2.5521	ves	ves
1694	103,225	0.4181382	2.1426	ves	yes
642	50 8752	0.4556534	2,3492	, - 3 no	yes Vec
1108	63 5958	0.6915431	2.0345	ves	VAC
1366	50 5219	0.2197996	2.5013	ves	VAC
1535	74 9148	0 2442819	2.0010	Vec	VAC
51	72 9105	0.6091219	3.3681	ves	VAC
<u> </u>	72.5105	0.0001210	5.5001	,	yes

1084	53.1289	0.4181697	2.3438 no	yes
1348	58.0269	0.6306792	2.4705 no	yes
1134	50.9903	0.7880881	2.1128 no	yes
465	57.265	0.378287	2.1498 no	yes
1402	76.7009	0.2285832	3.3951 no	yes
1086	69.9879	0.5311579	2.1287 yes	yes
1095	57.1239	0.3999533	2.1649 yes	yes
1122	59.1506	0.3920645	2.148 yes	yes
456	50.1649	0.3646071	2.3496 no	yes
827	56.6248	0.6186164	2.1761 yes	yes
1358	61.8726	0.4433831	2.0948 yes	yes
1731	58.3241	0.1927425	4.7141 no	yes
1157	60.5998	0.1530631	2.4647 yes	yes
1654	57.0562	0.902111	3.4678 no	yes
1236	58.9659		no	No

no.subs	no.indels	Complex	Del	Ins	no.svs	Inversion	Translocation	Deletion
17448	867	23	381	463	443	151	141	92
16107	2606	152	###	701	345	60	155	83
11944	1734	109	###	560	729	39	51	144
8720	1050	16	690	344	193	59	48	58
7008	1256	44	450	762	388	48	36	44
6106	1322	25	806	491	172	48	58	51
5950	1159	18	393	748	155	42	26	74
4604	1714	21	###	598	297	72	63	79
3959	762	16	227	519	86	28	24	24
3495	641	10	246	385	145	42	42	34
9778	1145	8	599	538	200	58	68	21
8157	1167	45	814	308	181	46	57	61
7137	995	47	680	268	179	48	70	50
6955	796	6	397	393	121	43	31	18
6319	944	16	440	488	221	43	29	74
6195	655	37	466	152	43	9		12
4892	672	39	475	158	44	9	19	11
4519	460	13	258	189	75	18	24	23
4747	512	-3	306	203	69	22	23	17
4181	589	16	273	300	83	22	14	38
4101	464	91	240	215	52	13	23	11
1033	546	10	295	213	196	53	23	101
3056	531	10	255	271	300	105	110	101
3883	717	10	157	237	103	50	80	40
3725	505	3	200	240	192	26	89	40
2700	505	5	200	202	1/1	20	10	42
2500	274	ך ז	125	115	141	14	37	54 20
2222	242	2	246	100	164	14	23	20
2203	204	9 7	540 101	100	104	00 2	دں د	/
3540	290	/	101	100	10	ے 1	ح 11	5
3523	283	4	192	87 250	47	15	21	9
3481	673	12	403	258	69	15	37	8
3426	448	9	244	195	35	18	8	5
3410	593	11	293	289	394	148	142	58
3394	520	6	263	251	58	18	12	21
3393	497	/	261	229	36	8	5	20
33//	535	9	258	268	/9	23	24	21
3369	641	/	449	185	30	11	5	11
3352	344	9	168	167	41	10	11	15
3315	426	10	226	190	127	44	45	25
3295	510	4	219	287	86	20	28	30
3236	425	4	230	191	38	16	12	3
3212	594	7	277	310	192	65	76	24
3145	607	8	241	358	149	38	27	77
3141	430	11	275	144	81	30	35	10
3132	593	6	274	313	112	38	54	4
3132	309	5	178	126	33	12	8	12
3122	482	9	250	223	47	14	17	13

3120	32	0	24	8	132	43	59	16
3054	350	5	192	153	62	14	13	29
3042	342	10	155	177	44	10	16	11
3021	536	19	288	229	56	12	19	23
3015	401	7	249	145	112	38	42	16
3013	511	11	285	215	55	17	15	19
2980	651	13	333	305	26	6	9	5
2945	420	4	257	159	34	8	10	13
2917	529	6	323	200	100	40	40	10
2796	266	9	139	118	118	48	46	8
2787	378	5	151	222	56	16	16	15
2785	378	7	217	154	44	7	14	18
2779	487	13	280	194	150	61	59	4
2767	258	7	145	106	11	0	4	6
2734	363	7	180	176	53	20	18	11
2730	434	5	250	179	33	13	13	4
2720	370	4	182	184	149	42	40	55
2709	266	5	138	123	35	6	13	15
2703	298	8	177	113	32	10	8	12
2699	495	14	254	227	73	32	23	9
2670	367	6	175	186	12	4	5	1
2666	464	7	242	215	11	3	3	4
2657	382	6	183	193	33	7	15	8
2654	214	6	131	77	15	2	7	5
2607	307	7	180	120	92	25	33	19
2587	328	8	199	121	91	32	15	35
2580	347	5	174	168	51	22	11	9
2555	485	8	231	246	85	22	22	35
2542	410	6	224	180	291	92	85	71
2516	332	10	192	130	36	14	14	1
2515	417	7	205	205	123	29	28	58
2499	313	3	181	129	84	23	33	15
2487	365	2	178	185	84	27	10	44
2450	239	7	152	80	99	33	34	16
2440	294	3	179	112	42	14	16	5
2418	263	2	111	150	35	8	16	9
2321	239	4	138	97	26	6	12	4
2309	260	9	145	106	43	13	14	11
2300	190	0	107	83	72	22	43	2
2255	226	3	117	106	25	6	7	7
2250	199	2	111	86	103	19	18	59
2239	326	11	200	115	105	24	31	38
2223	355	10	209	136	146	55	56	15
2209	369	9	194	166	17	5	5	5
2159	472	5	250	217	27	10	11	3
2127	224	5	132	87	66	12	19	27
2084	329	5	159	165	42	11	10	17
2082	288	8	146	134	54	6	14	28
2072	362	5	198	159	35	10	10	14
2038	535	8	241	286	74	13	21	34

2010	213	4	133	76	28	13	4	8
1898	340	8	212	120	50	13	20	15
1884	233	4	126	103	80	33	28	14
1839	277	11	158	108	69	22	28	10
1795	252	5	150	97	11	2	0	8
1764	265	10	140	115	43	10	18	12
1752	188	5	78	105	26	7	8	9
1713	214	7	112	95	21	5	9	6
1523	185	1	136	48	112	39	35	20
1502	178	7	93	78	8	2	3	2
1491	198	3	95	100	14	2	5	7
1161	110	8	57	45	8	3	1	2
928	106	3	63	40	5	1	1	3
923	114	4	65	45	6	3	1	0
411	68	10	30	28	1	0	0	1

Tandem.duplication

- 2 5 9 1 3 2
 - 0 2 0

SUPPLEMENTARY TABLE 8

Sanger ID	Battenberg status	Included_in_subclonal_analysis
PD11328a	yes	yes
PD11329a	yes	yes
PD11330a	yes	yes
PD11331a	yes	yes
PD11332a	yes	yes
PD11333a	yes	yes
PD11334a	yes	yes
PD11335a	yes	yes
PD12337a	yes	yes
PD13412a	yes	yes
PD14721a	yes	yes
PD14722a	yes	no
PD14724a	yes	yes
PD14725a	yes	yes
PD14726a	yes	yes
PD14727a	yes	yes
PD14728a	yes	yes
PD14729a	yes	yes
PD14730a	yes	yes
PD14731a	yes	yes
PD12806a	yes	yes
PD12807a	yes	yes
PD12808a	yes	yes
PD12809a	yes	yes
PD12810a	yes	yes
PD12811a	yes	yes
PD12812a	yes	yes
PD12813a	yes	yes
PD12814a	yes	yes
PD12815a	yes	yes
PD12816a	yes	yes
PD12817a	yes	yes
PD12818a	yes	yes
PD12819a	yes	no
PD12820a	yes	yes
PD12821a	yes	yes
PD12822a	yes	no
PD12823a	yes	no
PD12824a	yes	yes
PD12825a	yes	yes
PD128263	yes	
PD128283	yes	yes
PD128293	yes	yes
PD12830d	yes	yes
FTTS222	yes	yes
P128323	yes	yes
PD12834a	yes	yes

PD12835a	yes	yes
PD12836a	yes	no
PD12837a	yes	yes
PD12838a	yes	yes
PD12840a	yes	yes
PD12841a	yes	yes
PD12842a	yes	yes
PD12843a	yes	no
PD12844a	yes	yes
PD12845a	yes	yes
PD13380a	yes	yes
PD13381a	yes	yes
PD13382a	yes	yes
PD13383a	yes	no
PD13384a	yes	yes
PD13386a	yes	yes
PD13387a	yes	yes
PD13388a	yes	yes
PD13389a	yes	yes
PD13390a	yes	yes
PD13391a	yes	no
PD13392a	yes	no
PD13393a	yes	yes
PD13394a	yes	yes
PD13395a	yes	yes
PD13396a	yes	yes
PD13397a	no	no
PD13398a	yes	yes
PD13399a	yes	yes
PD13400a	yes	no
PD13401a	yes	yes
PD13402a	yes	yes
PD13404a	yes	no
PD13405a	yes	yes
PD13406a	yes	yes
PD13407a	yes	no
PD13408a	yes	yes
PD13409a	yes	no
PD13410a	yes	yes
PD13411a	yes	no
PD14706a	yes	yes
PD14707a	yes	yes
PD14708a	yes	yes
PD14709a	yes	no
PD14710a	yes	yes
PD14711a	yes	yes
PD14712a	yes	yes
PD14713a	yes	yes
PD14714a	yes	yes
PD14716a	yes	yes

PD14717a	yes	yes
PD14718a	yes	yes
PD14719a	yes	yes
PD14720a	yes	no
PD14732a	yes	no
PD14733a	yes	yes
PD14734a	yes	yes
PD14735a	yes	yes
PD14736a	yes	yes
PD6204a_Illumina	yes	yes
PD9168a	yes	yes
PD9169a	yes	yes
PD9746a	yes	yes
PD9749a	yes	yes
PD9751a	yes	yes