91 research outputs found

    The Blood of Healthy Individuals Exhibits CD8 T Cells with a Highly Altered TCR Vb Repertoire but with an Unmodified Phenotype

    Get PDF
    CD8 T cell clonal expansions (TCE) have been observed in elderly, healthy individuals as well in old mice, and have been associated with the ageing process. Both chronic latent and non-persistent viral infections have been proposed to drive the development of distinct non-functional and functional TCE respectively. Biases in TCR Vβ repertoire diversity are also recurrently observed in patients that have undergone strong immune challenge, and are preferentially observed in the CD8 compartment. Healthy adults can also exhibit CD8 T cells with strong alterations of their CDR3 length distribution. Surprisingly, no specific investigations have been conducted to analyze the CD8 T cell repertoire in normal adults, to determine if such alterations in TCR Vβ repertoire share the features of TCE. In this study, we characterized the phenotype and function of the CD8 population in healthy individuals of 25–52 years of age. All but one of the EBV-positive HLA-B8 healthy volunteers that were studied were CMV-negative. Using a specific unsupervised statistical method, we identified Vβ families with altered CDR3 length distribution and increased TCR Vβ/HPRT transcript ratios in all individuals tested. The increase in TCR Vβ/HPRT transcript ratio was more frequently associated with an increase in the percentage of the corresponding Vβ+ T cells than with an absence of modification of their percentage. However, in contrast with the previously described TCE, these CD8+ T cells were not preferentially found in the memory CD8 subset, they exhibited normal effector functions (cytokine secretion and cytotoxic molecule expression) and they were not reactive to a pool of EBV/CMV/Flu virus peptides. Taken together, the combined analysis of transcripts and proteins of the TCR Vβ repertoire led to the identification of different types of CD8+ T cell clone expansion or contraction in healthy individuals, a situation that appears more complex than previously described in aged individuals

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Enhancement of Tumour-Specific Immune Responses In Vivo by ‘MHC Loading-Enhancer’ (MLE)

    Get PDF
    BACKGROUND:Class II MHC molecules (MHC II) are cell surface receptors displaying short protein fragments for the surveillance by CD4+ T cells. Antigens therefore have to be loaded onto this receptor in order to induce productive immune responses. On the cell surface, most MHC II molecules are either occupied by ligands or their binding cleft has been blocked by the acquisition of a non-receptive state. Direct loading with antigens, as required during peptide vaccinations, is therefore hindered. PRINCIPAL FINDINGS:Here we show, that the in vivo response of CD4+ T cells can be improved, when the antigens are administered together with 'MHC-loading enhancer' (MLE). MLE are small catalytic compounds able to open up the MHC binding site by triggering ligand-release and stabilizing the receptive state. Their enhancing effect on the immune response was demonstrated here with an antigen from the influenza virus and tumour associated antigens (TAA) derived from the NY-ESO-1 protein. The application of these antigens in combination with adamantane ethanol (AdEtOH), an MLE compound active on human HLA-DR molecules, significantly increased the frequency of antigen-specific CD4+ T cells in mice transgenic for the human MHC II molecule. Notably, the effect was evident only with the MLE-susceptible HLA-DR molecule and not with murine MHC II molecules non-susceptible for the catalytic effect of the MLE. CONCLUSION:MLE can specifically increase the potency of a vaccine by facilitating the efficient transfer of the antigen onto the MHC molecule. They may therefore open a new way to improve vaccination efficacy and tumour-immunotherapy

    Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct

    Get PDF
    Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines

    Alternate-locus aware variant calling in whole genome sequencing

    Full text link
    BACKGROUND: The last two human genome assemblies have extended the previous linear golden-path paradigm of the human genome to a graph-like model to better represent regions with a high degree of structural variability. The new model offers opportunities to improve the technical validity of variant calling in whole-genome sequencing (WGS). METHODS: We developed an algorithm that analyzes the patterns of variant calls in the 178 structurally variable regions of the GRCh38 genome assembly, and infers whether a given sample is most likely to contain sequences from the primary assembly, an alternate locus, or their heterozygous combination at each of these 178 regions. We investigate 121 in-house WGS datasets that have been aligned to the GRCh37 and GRCh38 assemblies. RESULTS: We show that stretches of sequences that are largely but not entirely identical between the primary assembly and an alternate locus can result in multiple variant calls against regions of the primary assembly. In WGS analysis, this results in characteristic and recognizable patterns of variant calls at positions that we term alignable scaffold-discrepant positions (ASDPs). In 121 in-house genomes, on average 51.8±3.8 of the 178 regions were found to correspond best to an alternate locus rather than the primary assembly sequence, and filtering these genomes with our algorithm led to the identification of 7863 variant calls per genome that colocalized with ASDPs. Additionally, we found that 437 of 791 genome-wide association study hits located within one of the regions corresponded to ASDPs. CONCLUSIONS: Our algorithm uses the information contained in the 178 structurally variable regions of the GRCh38 genome assembly to avoid spurious variant calls in cases where samples contain an alternate locus rather than the corresponding segment of the primary assembly. These results suggest the great potential of fully incorporating the resources of graph-like genome assemblies into variant calling, but also underscore the importance of developing computational resources that will allow a full reconstruction of the genotype in personal genomes. Our algorithm is freely available at https://github.com/charite/asdpex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0383-z) contains supplementary material, which is available to authorized users

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Fundus anaemicus as a cause of a loss of visual acuity

    No full text

    Physiotherapeutische Behandlung nach Früh- und Spätfolgen von Verletzungen

    No full text
    corecore