133 research outputs found

    Deficiency of Mkrn2 causes abnormal spermiogenesis and spermiation, and impairs male fertility.

    Get PDF
    Although recent studies have shed insights on some of the potential causes of male infertility, new underlining molecular mechanisms still remain to be elucidated. Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. We developed an Mrkn2 knockout mouse model to study the role of this gene, and found that deletion of Mkrn2 in mice led to male infertility. Mkrn2 knockout mice produced abnormal sperms characterized by low number, poor motility, and aberrant morphology. Disruption of Mkrn2 also caused failure of sperm release (spermiation failure) and misarrangement of ectoplasmic specialization (ES) in testes, thus impairing spermiogenesis and spermiation. To understand the molecular mechanism, we found that expression of Odf2, a vital protein in spermatogenesis, was significantly decreased. In addition, we found that expression levels of Odf2 were decreased in Mkrn2 knockout mice. We also found that MKRN2 was prominently expressed in the sperm of normal men, but was significantly reduced in infertile men. This result indicates that our finding is clinically relevant. The results of our study provided insights into a new mechanism of male infertility caused by the MKRN2 downregulation

    Clinicopathological characteristics, molecular landscape, and biomarker landscape for predicting the efficacy of PD-1/PD-L1 inhibitors in Chinese population with mismatch repair deficient urothelial carcinoma: a real-world study

    Get PDF
    Urothelial carcinoma (UC) with deficient mismatch repair (dMMR) is a specific subtype of UC characterized by the loss of mismatch repair (MMR) proteins and its association with Lynch syndrome (LS). However, comprehensive real-world data on the incidence, clinicopathological characteristics, molecular landscape, and biomarker landscape for predicting the efficacy of PD-1/PD-L1 inhibitors in the Chinese patients with dMMR UC remains unknown. We analyzed 374 patients with bladder urothelial carcinoma (BUC) and 232 patients with upper tract urothelial carcinoma (UTUC) using tissue microarrays, immunohistochemistry, and targeted next-generation sequencing. Results showed the incidence of dMMR UC was higher in the upper urinary tract than in the bladder. Genomic analysis identified frequent mutations in KMT2D and KMT2C genes and LS was confirmed in 53.8% of dMMR UC cases. dMMR UC cases displayed microsatellite instability-high (MSI-H) (PCR method) in 91.7% and tumor mutational burden-high (TMB-H) in 40% of cases. The density of intratumoral CD8+ T cells correlated with better overall survival in dMMR UC patients. Positive PD-L1 expression was found in 20% cases, but some patients positively responded to immunotherapy despite negative PD-L1 expression. Our findings provide valuable insights into the characteristics of dMMR UC in the Chinese population and highlights the relevance of genetic testing and immunotherapy biomarkers for treatment decisions

    SProtP: A Web Server to Recognize Those Short-Lived Proteins Based on Sequence-Derived Features in Human Cells

    Get PDF
    Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore