5,847 research outputs found

    Understanding Self-Reported Sexual Violence Perpetration: Correlates and Prevention Participation

    Get PDF
    Bystander prevention programs seek to educate individuals on the nature of sexual violence and increase bystander efficacy. This study seeks to evaluate the effectiveness of the Bringing in the Bystander (BITB) prevention program through self-reports of perpetration behaviors as well as risk factors associated with perpetration. The bystander prevention program was implemented on a rural mid-sized public university and first-year students were surveyed three times at separate time points (2 weeks, 5 months, and 12 months) after the program conclusion. Results from a correlational and logistic regression analysis show that endorsement of violent peer norms, rape myth acceptance, and rape proclivity of self were all significant correlates of perpetration. The results also indicated that endorsement of coercive peer norms was a predictor of recent perpetration. There were no significant differences in self-reported recent perpetration between the control and treatment group. However, recent perpetration rates did decrease for the treatment group, which means BITB is on the right track to ending sexual violence on college campuses

    Characterization of Maximally Random Jammed Sphere Packings: II. Correlation Functions and Density Fluctuations

    Full text link
    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of correlation functions that can be rigorously related to effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contacts between spheres in the MRJ packings translate into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then, we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths. These packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, we study and compute exclusion probabilities and pore size distributions as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings based on the structural characteristics analyzed in this paper.Comment: 25 pages, 13 Figures; corrected typos, updated reference

    Characterization of maximally random jammed sphere packings: Voronoi correlation functions

    Full text link
    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a central sphere contacts 12 neighbors) in the MRJ packings, a preliminary Voronoi topology analysis indicates the presence of strongly distorted icosahedra.Comment: 13 pages, 10 figure

    Characterization of Maximally Random Jammed Sphere Packings. III. Transport and Electromagnetic Properties via Correlation Functions

    Full text link
    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here, we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.Comment: 19 pages, 16 Figure
    corecore