715 research outputs found

    Alternative Derivation of the Correspondence Between Rindler and Minkowski Particles

    Get PDF
    We develop an alternative derivation of Unruh and Wald's seminal result that the absorption of a Rindler particle by a detector as described by uniformly accelerated observers corresponds to the emission of a Minkowski particle as described by inertial observers. Actually, we present it in an inverted version, namely, that the emission of a Minkowski particle corresponds in general to either the emission or the absorption of a Rindler particle.Comment: 7 pages, no-figures, REVTE

    Elementary particles under the lens of the black holes

    Get PDF
    After a brief review of the historical development and CLASSICAL properties of the BLACK HOLES, we discuss how our present knowledge of some of their QUANTUM properties shed light on the very concept of ELEMENTARY PARTICLE. As an illustration, we discuss in this context the decay of accelerated protons, which may be also relevant to astrophysics.Comment: 6 pages, Proceedings of the XXIII Brazilian National Meeting on Particles Physics and Fields. To appear in special issue of the Brazilian Journal of Physic

    Search for semiclassical-gravity effects in relativistic stars

    Get PDF
    We discuss the possible influence of gravity in the neutronization process, p+e−→nÎœep^+ e^- \to n \nu_e, which is particularly important as a cooling mechanism of neutron stars. Our approach is semiclassical in the sense that leptonic fields are quantized on a classical background spacetime, while neutrons and protons are treated as excited and unexcited nucleon states, respectively. We expect gravity to have some influence wherever the energy content carried by the in-state is barely above the neutron mass. In this case the emitted neutrinos would be soft enough to have a wavelength of the same order as the space curvature radius.Comment: 10 pages (REVTEX

    Do static sources outside a Schwarzschild black hole radiate?

    Full text link
    We show that static sources coupled to a massless scalar field in Schwarzschild spacetime give rise to emission and absorption of zero-energy particles due to the presence of Hawking radiation. This is in complete analogy with the description of the bremsstrahlung by a uniformly accelerated charge from the coaccelerated observers' point of view. The response rate of the source is found to coincide with that in Minkowski spacetime as a function of its proper acceleration. This result may be viewed as restoration of the equivalence principle by the Hawking effect.Comment: 13 page

    Decay of protons and neutrons induced by acceleration

    Get PDF
    We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay rates are verified to agree in both cases. For sake of simplicity our calculations are performed in a two-dimensional spacetime since our conclusions are not conceptually affected by this.Comment: 18 pages (REVTEX), 3 figure

    Rindler and Minkowski particles relationship revisited

    Get PDF
    We show that the emission of a Minkowski particle by a general class of scalar sources as described by inertial observers corresponds to either the emission or the absorption of a Rindler particle as described by uniformly accelerated observers. Our results are discussed in connection with the current controversy whether uniformly accelerated detectors radiate.Comment: To appear in Physics Letters B, 9 pages, LATEX, no-figure

    The Unruh effect and its applications

    Full text link
    It has been thirty years since the discovery of the Unruh effect. It has played a crucial role in our understanding that the particle content of a field theory is observer dependent. This effect is important in its own right and as a way to understand the phenomenon of particle emission from black holes and cosmological horizons. Here, we review the Unruh effect with particular emphasis to its applications. We also comment on a number of recent developments and discuss some controversies. Effort is also made to clarify what seems to be common misconceptions.Comment: 53 pages, 11 figures, submitted to Reviews of Modern Physic
    • 

    corecore