101 research outputs found
Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Targeted agents and immunotherapies: optimizing outcomes in melanoma
Treatment options for patients with metastatic melanoma, and especially BRAF-mutant melanoma, have changed dramatically in the past 5 years, with the FDA approval of eight new therapeutic agents. During this period, the treatment paradigm for BRAF-mutant disease has evolved rapidly: the standard-of-care BRAF-targeted approach has shifted from single-agent BRAF inhibition to combination therapy with a BRAF and a MEK inhibitor. Concurrently, immunotherapy has transitioned from cytokine-based treatment to antibody-mediated blockade of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and, now, the programmed cell-death protein 1 (PD-1) immune checkpoints. These changes in the treatment landscape have dramatically improved patient outcomes, with the median overall survival of patients with advanced-stage melanoma increasing from approximately 9 months before 2011 to at least 2 years - and probably longer for those with BRAF-V600-mutant disease. Herein, we review the clinical trial data that established the standard-of-care treatment approaches for advanced-stage melanoma. Mechanisms of resistance and biomarkers of response to BRAF-targeted treatments and immunotherapies are discussed, and the contrasting clinical benefits and limitations of these therapies are explored. We summarize the state of the field and outline a rational approach to frontline-treatment selection for each individual patient with BRAF-mutant melanoma
Comprehensive molecular characterization of the hippo signaling pathway in cancer
Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
Multiparameter analysis of naevi and primary melanomas identifies a subset of naevi with elevated markers of transformation.
Here we have carried out a multiparameter analysis using a panel of 28 immunohistochemical markers to identify markers of transformation from benign and dysplastic naevus to primary melanoma in three separate cohorts totalling 279 lesions. We have identified a set of eight markers that distinguish naevi from melanoma. None of markers or parameters assessed differentiated benign from dysplastic naevi. Indeed, the naevi clustered tightly in terms of their immunostaining patterns whereas primary melanomas showed more diverse staining patterns. A small subset of histopathologically benign lesions had elevated levels of multiple markers associated with melanoma, suggesting that these represent naevi with an increased potential for transformation to melanoma
Objective assessment of tumor infiltrating lymphocytes as a prognostic marker in melanoma using machine learning algorithms
Pricing European options and risk measurement under exponential Lévy models — a practical guide
International audienceThis paper provides a thorough survey of the European option pricing, with new trends in the risk measurement, under exponential Lévy models. We develop all steps of pricing from equivalent martingale measures construction to numerical valuation of the option price under these measures. We then construct an algorithm, based on Rockafellar and Uryasev representation and fast Fourier transform, to compute Risk indicators, like the VaR and the CVaR of derivatives. The results are illustrated with an example of each exponential Lévy class. The main contribution of this paper is to build a comprehensive study from the theoretical point of view to practical numerical illustration and to give a complete characterization of the studied equivalent martingale measures by discussing their similarity and their applicability in practice. Furthermore, this work proposes applications to the Fourier inversion technique in risk measurement
Serum markers of B‐cell activation in pregnancy during late gestation, delivery, and the postpartum period
Vpliv mešanja taline na vsebnost nekovinskih vključkov v jeklu
Inositol polyphosphate 4-phosphatase type II (INPP4B) negatively regulates PI3K/Akt signalling and has a tumour suppressive role in some types of cancers. However, we have found that it is upregulated in a subset of melanomas. Here we report that INPP4B can function as an oncogenic driver through activation of serum- and glucocorticoid-regulated kinase 3 (SGK3) in melanoma. While INPP4B knockdown inhibited melanoma cell proliferation and retarded melanoma xenograft growth, overexpression of INPP4B enhanced melanoma cell and melanocyte proliferation and triggered anchorage-independent growth of melanocytes. Noticeably, INPP4B-mediated melanoma cell proliferation was not related to activation of Akt, but was mediated by SGK3. Upregulation of INPP4B in melanoma cells was associated with loss of miRNA (miR)-494 and/or miR-599 due to gene copy number reduction. Indeed, overexpression of miR-494 or miR-599 downregulated INPP4B, reduced SGK3 activation, and inhibited melanoma cell proliferation, whereas introduction of anti-miR-494 or anti-miR-599 upregulated INPP4B, enhanced SGK3 activation, and promoted melanoma cell proliferation. Collectively, these results identify upregulation of INPP4B as an oncogenic mechanism through activation of SGK3 in a subset of melanomas, with implications for targeting INPP4B and restoring miR-494 and miR-599 as novel approaches in the treatment of melanomas with high INPP4B expression
- …
