77 research outputs found

    Adjuvant therapy with high dose vitamin D following primary treatment of melanoma at high risk of recurrence: A placebo controlled randomised phase II trial (ANZMTG 02.09 Mel-D)

    Get PDF
    Patients with primary cutaneous melanomas that are ulcerated and >2 mm in thickness, >4 mm in thickness and those with nodal micrometastases at diagnosis, have few options for adjuvant treatment. Recent studies have suggested a role for vitamin D to delay melanoma recurrence and improve overall prognosis

    The Quantum Internet

    Get PDF
    Quantum networks offer a unifying set of opportunities and challenges across exciting intellectual and technical frontiers, including for quantum computation, communication, and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for the generation and characterization of quantum coherence and entanglement. Fundamental to this endeavor are quantum interconnects that convert quantum states from one physical system to those of another in a reversible fashion. Such quantum connectivity for networks can be achieved by optical interactions of single photons and atoms, thereby enabling entanglement distribution and quantum teleportation between nodes.Comment: 15 pages, 6 figures Higher resolution versions of the figures can be downloaded from the following link: http://www.its.caltech.edu/~hjkimble/QNet-figures-high-resolutio

    Searching for Exoplanets Using a Microresonator Astrocomb

    Get PDF
    Detection of weak radial velocity shifts of host stars induced by orbiting planets is an important technique for discovering and characterizing planets beyond our solar system. Optical frequency combs enable calibration of stellar radial velocity shifts at levels required for detection of Earth analogs. A new chip-based device, the Kerr soliton microcomb, has properties ideal for ubiquitous application outside the lab and even in future space-borne instruments. Moreover, microcomb spectra are ideally suited for astronomical spectrograph calibration and eliminate filtering steps required by conventional mode-locked-laser frequency combs. Here, for the calibration of astronomical spectrographs, we demonstrate an atomic/molecular line-referenced, near-infrared soliton microcomb. Efforts to search for the known exoplanet HD 187123b were conducted at the Keck-II telescope as a first in-the-field demonstration of microcombs

    Are Better Workers Also Better Humans? On Pharmacological Cognitive Enhancement in the Workplace and Conflicting Societal Domains

    Get PDF
    The article investigates the sociocultural implications of the changing modern workplace and of pharmacological cognitive enhancement (PCE) as a potential adaptive tool from the viewpoint of social niche construction. We will attempt to elucidate some of the sociocultural and technological trends that drive and influence the characteristics of this specific niche, and especially to identify the kind of capabilities and adaptations that are being promoted, and to ascertain the capabilities and potentialities that might become diminished as a result. In this context, we will examine what PCE is, and how and why it might be desirable as a tool for adaptation within the workplace. As human beings are, or at least should be allowed to be, more than merely productive, able-bodied and able-minded workers, we will further examine how adaptation to the workplace niche could result in problems in other domains of modern societal life that require the same or other cognitive capabilities. In this context we will also focus on the concept of responsibility and how it pertains to PCE and the modern workplace niche. This will shed some light on the kind of trends related to workplace niche construction, PCE and capability promotion that we can expect in the future, and on the contexts in which this might be either beneficial or detrimental to the individual as a well-rounded human being, and to other members of society

    Parental Genome Dosage Imbalance Deregulates Imprinting in Arabidopsis

    Get PDF
    In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2) and FLOWERING WAGENINGEN (FWA) controlled by DNA methylation, and MEDEA (MEA) and PHERES1 (PHE1) controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis

    Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction.</p> <p>Results</p> <p>Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in <it>Boechera</it>. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with <it>Boechera</it>-specific nucleotide substitutions (NSs). Analysis of the Gibbs free energy (ΔG) of these pre-miRNA stem-loops with NSs showed that the <it>Boechera</it>-specific miRNA NSs significantly (p ≤ 0.05) enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120), RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7) and TCP family transcription factor 10 (TCP10) were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05) up-regulation at the megaspore mother cell (MMC) stage of ovule development in apomictic genotypes.</p> <p>Conclusions</p> <p>This study constitutes the first extensive insight into the conservation and expression of microRNAs in <it>Boechera </it>sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11) was found differentially expressed with significant (p ≤ 0.05) up-regulation at the MMC stage of ovule development in apomictic genotypes. The results also demonstrate that nucleotide changes in mature miRNAs significantly (p ≤ 0.05) enhance the thermodynamic stability of pre-miRNA stem-loops.</p

    The evolution of genomic imprinting:Theories, predictions and empirical tests

    Get PDF
    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues’ kinship theory; Day and Bonduriansky’s sexual antagonism theory; and Wolf and Hager’s maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Non-affirmative Theory of Education as a Foundation for Curriculum Studies, Didaktik and Educational Leadership

    Get PDF
    This chapter presents non-affirmative theory of education as the foundation for a new research program in education, allowing us to bridge educational leadership, curriculum studies and Didaktik. We demonstrate the strengths of this framework by analyzing literature from educational leadership and curriculum theory/didaktik. In contrast to both socialization-oriented explanations locating curriculum and leadership within existing society, and transformation-oriented models viewing education as revolutionary or super-ordinate to society, non-affirmative theory explains the relation between education and politics, economy and culture, respectively, as non-hierarchical. Here critical deliberation and discursive practices mediate between politics, culture, economy and education, driven by individual agency in historically developed cultural and societal institutions. While transformative and socialization models typically result in instrumental notions of leadership and teaching, non-affirmative education theory, previously developed within German and Nordic education, instead views leadership and teaching as relational and hermeneutic, drawing on ontological core concepts of modern education: recognition; summoning to self-activity and Bildsamkeit. Understanding educational leadership, school development and teaching then requires a comparative multi-level approach informed by discursive institutionalism and organization theory, in addition to theorizing leadership and teaching as cultural-historical and critical-hermeneutic activity. Globalisation and contemporary challenges to deliberative democracy also call for rethinking modern nation-state based theorizing of education in a cosmopolitan light. Non-affirmative education theory allows us to understand and promote recognition based democratic citizenship (political, economical and cultural) that respects cultural, ethical and epistemological variations in a globopolitan era. We hope an American-European-Asian comparative dialogue is enhanced by theorizing education with a non-affirmative approach
    corecore