88 research outputs found

    A prognostic index for operable, node-negative breast cancer

    Get PDF
    Clinical data and samples from patients diagnosed, more than 10 years previously, with operable node-negative breast cancer (participants in the Scottish Adjuvant Tamoxifen trial), were revisited, Cases with two distinct categories of outcome were selected; more than 10 years disease-free survival ('good outcome') or distant relapse within 6 years of diagnosis ('poor outcome'). An initial set of cases was analysed for a range of putative prognostic markers and a prognostic index, distinguishing the two outcome categories, was calculated. This index was then validated by testing its predictive power on a second, independent set of cases. A combination of histological grade plus immunochemical staining for BCL-2, p27 and Cyclin D 1, generated a useful prognostic index for tamoxifen-treated patients but not for those treated by surgery alone, The value of the index was confirmed in a second set of tamoxifen-treated, early stage breast cancers. Over-all, it correctly predicted good and poor outcome in 79 and 74% of cases, respectively (odds ratio 11.0). Other markers assessed added little to prediction of outcome. In the case of molecular assays, sensitivity and reliability were compromised by the age of the tissue specimens and the variability of fixation protocols. In selecting patients for adjuvant systemic chemotherapy, the proposed index improves considerably on current international guidelines and matches the performance reported for 'gene-expression signature' analysis. (C) 2004 Cancer Research UK.</p

    The Role of Human Movement in the Transmission of Vector-Borne Pathogens

    Get PDF
    Vector-borne diseases constitute a largely neglected and enormous burden on public health in many resource-challenged environments, demanding efficient control strategies that could be developed through improved understanding of pathogen transmission. Human movement—which determines exposure to vectors—is a key behavioral component of vector-borne disease epidemiology that is poorly understood. We develop a conceptual framework to organize past studies by the scale of movement and then examine movements at fine-scale—i.e., people going through their regular, daily routine—that determine exposure to insect vectors for their role in the dynamics of pathogen transmission. We develop a model to quantify risk of vector contact across locations people visit, with emphasis on mosquito-borne dengue virus in the Amazonian city of Iquitos, Peru. An example scenario illustrates how movement generates variation in exposure risk across individuals, how transmission rates within sites can be increased, and that risk within sites is not solely determined by vector density, as is commonly assumed. Our analysis illustrates the importance of human movement for pathogen transmission, yet little is known—especially for populations most at risk to vector-borne diseases (e.g., dengue, leishmaniasis, etc.). We outline several important considerations for designing epidemiological studies to encourage investigation of individual human movement, based on experience studying dengue

    Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear.</p> <p>Methods</p> <p>We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers.</p> <p>Results</p> <p>SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC.</p> <p>Conclusion</p> <p>Our data suggested that the down-regulation of SFRP1 as a candidate tumor suppressor gene, triggered by the epigenetic and/or genetic events, could contribute to the oncogenesis of HCC.</p

    Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias

    Get PDF
    Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease

    Epithelial Tissues Have Varying Degrees of Susceptibility to KrasG12D-Initiated Tumorigenesis in a Mouse Model

    Get PDF
    Activating mutations in the Kras gene are commonly found in some but not all epithelial cancers. In order to understand the susceptibility of different epithelial tissues to Kras-induced tumorigenesis, we introduced one of the most common Kras mutations, KrasG12D, broadly in epithelial tissues. We used a mouse model in which the G12D mutation is placed in the endogenous Kras locus controlled by inducible, Cre-mediated recombination in tissues expressing cytokeratin 19 including the oral cavity, GI tract, lungs, and ducts of the liver, kidney, and the pancreas. Introduction of the KrasG12D mutation in adult mouse tissues led to neoplastic changes in some but not all of these tissues. Notably, many hyperplasias, metaplasias and adenomas were observed in the oral cavity, stomach, colon and lungs, suggesting that exposure to products of the outside environment promotes KrasG12D-initiated tumorigenesis. However, environmental exposure did not consistently correlate with tumor formation, such as in the small intestine, suggesting that there are also intrinsic differences in susceptibility to Kras activation. The pancreas developed small numbers of mucinous metaplasias with characteristics of early stage pancreatic intraepithelial neoplasms (PanINs), supporting the hypothesis that pancreatic ducts have the potential to give rise pancreatic cancer

    A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk.

    Get PDF
    Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Physiologically Based Pharmacokinetic Modelling of Cytochrome P450 2C9-Related Tolbutamide Drug Interactions with Sulfaphenazole and Tasisulam

    Get PDF
    Background and Objectives: Cytochrome P450 2C9 (CYP2C9) is involved in the biotransformation of many commonly used drugs, and significant drug interactions have been reported for CYP2C9 substrates. Previously published physiologically based pharmacokinetic (PBPK) models of tolbutamide are based on an assumption that its metabolic clearance is exclusively through CYP2C9; however, many studies indicate that CYP2C9 metabolism is only responsible for 80–90% of the total clearance. Therefore, these models are not useful for predicting the magnitude of CYP2C9 drug–drug interactions (DDIs). This paper describes the development and verification of SimCYP-based PBPK models that accurately describe the human pharmacokinetics of tolbutamide when dosed alone or in combination with the CYP2C9 inhibitors sulfaphenazole and tasisulam. Methods: A PBPK model was optimized in SimCYP for tolbutamide as a CYP2C9 substrate, based on published in vitro and clinical data. This model was verified to replicate the magnitude of DDI reported with sulfaphenazole and was further applied to simulate the DDI with tasisulam, a small molecule investigated for the treatment of cancer. A clinical study (CT registration # NCT01185548) was conducted in patients with cancer to assess the pharmacokinetic interaction of tasisulum with tolbutamide. A PBPK model was built for tasisulam, and the clinical study design was replicated using the optimized tolbutamide model. Results: The optimized tolbutamide model accurately predicted the magnitude of tolbutamide AUC increase (5.3–6.2-fold) reported for sulfaphenazole. Furthermore, the PBPK simulations in a healthy volunteer population adequately predicted the increase in plasma exposure of tolbutamide in patients with cancer (predicted AUC ratio = 4.7–5.4; measured mean AUC ratio = 5.7). Conclusions: This optimized tolbutamide PBPK model was verified with two strong CYP2C9 inhibitors and can be applied to the prediction of CYP2C9 interactions for novel inhibitors. Furthermore, this work highlights the utility of mechanistic models in navigating the challenges in conducting clinical pharmacology studies in cancer patients

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is associated with several extra-pulmonary effects of which skeletal muscle wasting is one of the most common and contributes to reduced quality of life, increased morbidity and mortality. The molecular mechanisms leading to muscle wasting are not fully understood. Proteomic analysis of human skeletal muscle is a useful approach for gaining insight into the molecular basis for normal and pathophysiological conditions. Methods To identify proteins involved in the process of muscle wasting in COPD, we searched differentially expressed proteins in the vastus lateralis of COPD patients with low fat free mass index (FFMI), as a surrogate of muscle mass (COPDL, n = 10) (FEV1 33 ± 4.3% predicted, FFMI 15 ± 0.2 Kg.m−2), in comparison to patients with COPD and normal FFMI (COPDN, n = 8) and a group of age, smoking history, and sex matched healthy controls (C, n = 9) using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, combined with mass spectrometry (MS). The effect of silencing DOT1L protein expression on markers of cell arrest was analyzed in skeletal muscle satellite cells (HSkMSCs) in vitro and assessed by qPCR and Western blotting. Results A subset of 7 proteins was differentially expressed in COPDL compared to both COPDN and C. We found an increased expression of proteins associated with muscle homeostasis and protection against oxidative stress, and a decreased expression of structural muscle proteins and proteins involved in myofibrillogenesis, cell proliferation, cell cycle arrest and energy production. Among these was a decreased expression of the histone methyltransferase DOT1L. In addition, silencing of the DOT1L gene in human skeletal muscle satellite cells in vitro was significantly related to up regulation of p21 WAF1/Cip1/CDKN1A, a marker of cell arrest and ageing. Conclusions 2D-DIGE coupled with MS identified differences in the expression of several proteins in the wasted vastus lateralis that are relevant to the disease process. Down regulation of DOT1L in the vastus lateralis of COPDL patients may mediate the muscle wasting process through up regulation of markers of cell arrest and senescence
    corecore