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2D-DIGE proteomic analysis of vastus
lateralis from COPD patients with low and
normal fat free mass index and healthy
controls
Ramzi Lakhdar1, Ellen M. Drost1, William MacNee1, Ricardo Bastos2† and Roberto A. Rabinovich1*†

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is associated with several extra-pulmonary effects of
which skeletal muscle wasting is one of the most common and contributes to reduced quality of life, increased
morbidity and mortality. The molecular mechanisms leading to muscle wasting are not fully understood. Proteomic
analysis of human skeletal muscle is a useful approach for gaining insight into the molecular basis for normal and
pathophysiological conditions.

Methods: To identify proteins involved in the process of muscle wasting in COPD, we searched differentially expressed
proteins in the vastus lateralis of COPD patients with low fat free mass index (FFMI), as a surrogate of muscle
mass (COPDL, n = 10) (FEV1 33 ± 4.3% predicted, FFMI 15 ± 0.2 Kg.m−2), in comparison to patients with COPD and normal
FFMI (COPDN, n = 8) and a group of age, smoking history, and sex matched healthy controls (C, n = 9) using
two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, combined with mass
spectrometry (MS). The effect of silencing DOT1L protein expression on markers of cell arrest was analyzed
in skeletal muscle satellite cells (HSkMSCs) in vitro and assessed by qPCR and Western blotting.

Results: A subset of 7 proteins was differentially expressed in COPDL compared to both COPDN and C. We
found an increased expression of proteins associated with muscle homeostasis and protection against oxidative stress,
and a decreased expression of structural muscle proteins and proteins involved in myofibrillogenesis, cell proliferation,
cell cycle arrest and energy production. Among these was a decreased expression of the histone methyltransferase
DOT1L. In addition, silencing of the DOT1L gene in human skeletal muscle satellite cells in vitro was significantly
related to up regulation of p21 WAF1/Cip1/CDKN1A, a marker of cell arrest and ageing.

Conclusions: 2D-DIGE coupled with MS identified differences in the expression of several proteins in the wasted
vastus lateralis that are relevant to the disease process. Down regulation of DOT1L in the vastus lateralis of COPDL

patients may mediate the muscle wasting process through up regulation of markers of cell arrest and senescence.
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Background
Chronic obstructive pulmonary disease (COPD) is char-
acterized by airflow limitation that is not fully reversible
[1], is usually progressive and associated with a chronic
inflammatory response of the lungs to noxious particles
or gases of which cigarette smoking is the most common
risk factor [2].
COPD has significant systemic effects, among which

muscle wasting is common, and has been extensively
studied [3, 4]. Muscle wasting results in a loss of muscle
strength [3, 5–8], contributes to reduced exercise capacity
[9–12] and is a predictor of health related quality of life
(HRQoL) [13] and survival [14, 15] independent of the
degree of airflow limitation [12].
The mechanisms underlying weight loss and muscle

wasting in COPD are not completely understood and
are likely to be multi-factorial, including low physical
activity in patients with a sedentary habit, oxidative stress
and inflammation, among others [16, 17]. Results of a
previous study of a microarray analysis of the vastus
lateralis of COPD patients with muscle wasting, showed
over expression of the cyclin-dependent kinase inhibitor
1A (p21 WAF1/Cip1/CDKN1A) and changes in expression
of genes associated with cell cycle arrest, growth regula-
tion and energy production [18]. These results suggest
that cell senescence may play a role in muscle atrophy in
COPD [18].
There is evidence that COPD is a disease of accelerated

ageing [19]. Animal models of premature ageing show
structural changes in the lung that resemble those in
COPD and also show skeletal muscle abnormalities [20]
that occur with ageing [21]. It has been reported that limb
muscles of patients with COPD have increased number of
senescent satellite cells and a decreased muscle regenera-
tive capacity, compromising the maintenance of muscle
mass in these individuals [22]. Thus premature cellular
senescence and subsequent exhaustion of the muscles
regenerative potential may be related to the muscle abnor-
malities that are characteristic of these patients.
Proteomic analysis is a powerful tool for global evaluation

of protein expression, and a useful approach, coupled with
other functional genomic approaches, to gain insight into
the molecular basis for normal and pathophysiological
conditions [23, 24]. The two-dimensional fluorescence
difference in gel electrophoresis (2D-DIGE) technology
is now recognized as an accurate method to determine
and quantify proteins [25, 26], and therefore to assess
changes in protein expression associated with disease
phenotypic states.
With the aim of identifying proteins that are potentially

involved in the process of muscle wasting in COPD, we
searched for differentially expressed proteins in the vastus
lateralis of COPD patients with low fat free mass index
(FFMI), as a surrogate of muscle mass, (COPDL) in

comparison to patients with COPD and normal FFMI
(COPDN) and a group of age and sex matched healthy
controls (C) using 2D-DIGE combined with mass
spectrometry (MS).
Among the proteins identified, the histone methyl-

transferase DOT1L was found to be down-regulated in
COPDL. We hypothesize that down-regulation of DOT1L
mediates cell senescence through the up regulation of mol-
ecules involved in cell arrest (i.ep21 WAF1/Cip1/CDKN1A).
To test this hypothesis, DOT1L gene was silenced in
vitro in Human Skeletal Muscle Satellite Cells and
mRNA and protein levels of p21 WAF1/Cip1/CDKN1A
was assessed.

Methods
Study Group
Eighteen stable patients with COPD, ten with low FFMI
(COPDL) and eight with normal FFMI (COPDN), and
nine age, gender and smoking status-matched healthy
subjects with normal FFMI were included in the present
study (Table 1). The COPD patients had a history
compatible with the disease: at least 10 pack/years of
smoking and evidence of chronic airflow limitation
(post bronchodilator FEV1/FVC < 0.7) [27]. All partici-
pants were informed of any risks and discomfort asso-
ciated with the study, and written informed consent was
obtained. The study was approved by the Lothian Regional
Ethics Committee.

Measurements
Spirometry was measured (Alpha Spirometer; Vitalograph,
Buckingham, UK) according to American Thoracic
Society/European Respiratory Society (ATS/ERS) stan-
dards in all subjects [28] before and after the administra-
tion of 2.5 mg of nebulised salbutamol. Arterial blood
gases were measured (Ciba Corning 800, USA). Body
composition was estimated by a bioelectric impedance
device (TBF-300 M, TANITA Corporation, Tokyo,
Japan). Low FFMI was defined as <16 kg.m−2 for male
and < 15 kg.m−2 for female COPD patients [29]. As a
measure of exercise tolerance all participants per-
formed an encouraged 6MWT according to ATS guide-
lines [30]. Muscle strength was assessed as the maximal
isometric quadriceps voluntary contraction (QMVC)
using a strain gauge dynamometer (Chatillon® K-MSC
500, Ametek, Florida) [31]. HRQoL was assessed using
the St. George’s Respiratory Questionnaire [32]. Physical
activity level was assessed using the Voorrips physical
activity questionnaire in the whole population partici-
pating in the study [33]. In COPD patients activities of
daily living were assessed by the London Chest Activity
of Daily Living Scale (LCADL) [34].
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Muscle biopsy
An open muscle biopsy of the vastus lateralis (~0.8 g)
was taken in a Clinical Research Facility bed area using a
standard surgical technique [18].

Fibre type typification
Paraffin sections (5um) were de-waxed and re-hydrated
through graded ethanol using standard procedures.
Sections were placed in 250 ml of Novocastra pH8

retrieval buffer and subjected to antigen retrieval in a
de-cloaking chamber (Biocare Medical, USA) using a
protocol described elsewhere [35].

Vastus lateralis muscle protein extraction
Vastus lateralis muscle (~0.1 g) from each sample was
cut into small pieces with a scalpel and transferred in
metal bead tubes. 50 μl of extracting buffer (0.3%
Sodium carbonate, 0.5% Sodium hydrogen carbonate

Table 1 Characteristics of the study groups

Controls COPDN COPDL p-value

M/F 8/1 A 6/2 A 8/2 A ns

Age (Years) 68.8 ± 4.4 A 68.6 ± 5.2 A 66.7 ± 5.9 A ns

Height (m) 1.74 ± 0.08 A 1.70 ± 0.09 A 1.67 ± 0.08 A ns

Weight (Kg) 89.93 ± 15.63 A 76.1 ± 12.65 A 51.71 ± 5.71 B <0.001

BMI (Kg.m−2) 29.3 ± 4.6 A 26.2 ± 2.4 A 18.9 ± 1.9 B <0.0001

FFM 62.55 ± 11.35 A 54.13 ± 10.13 AB 43 ± 5.69 C <0.001

FFMI (Kg.m−2) 20.5 ± 2.3 A 18.6 ± 1.6 B 15.3 ± 0.7 C <0.0001

Active/ex-smokers 1/8 A 2/6 A 2/8 A ns

Pack/Year 30.9 ± 15 A 50.9 ± 23.1 A 64.3 ± 39.8 A ns

Average cessation (years) 24.6 ± 16.8 A 7.9 ± 7.6 B 5.4 ± 7.4 B <0.05

Age at smoking cessation (years) 44.2 ± 15.3 A 60.8 ± 8.3 B 61.3 ± 7.8 B 0.0039

mMRC 2.1 ± 1.4 3.1 ± 1.1 ns

FEV1 (L) 2.9 ± 0.5 A 1.2 ± 0.5 B 0.9 ± 0.4 B <0.0001

FEV1 (% pred) 98.6 ± 12.1 A 44.3 ± 19.9 B 33.2 ± 13.7 B <0.0001

FVC (L) 4 ± 0.7 A 2.9 ± 1.1 B 2.6 ± 1 B <0.01

FVC (% pred) 105.8 ± 12.4 A 85.6 ± 31.5 AB 76.5 ± 18.2 B <0.05

FEV1/FVC 0.7 ± 0 A 0.4 ± 0.1 B 0.3 ± 0.1 B <0.0001

PaO2 (mmHg) 74.3 ± 8 A 68.5 ± 9.7 A 75.2 ± 13.1 A ns

PaCO2 (mmHg) 41.2 ± 2.4 A 41 ± 3.9 A 43.1 ± 5.2 A ns

Physical Activity (V) 11.9 ± 5.1 A 6.3 ± 6 AB 1.1 ± 1 B <0.0005

Physical Activity (L) 33.1 ± 16 A 43.5 ± 10.4 A ns

QMVC (N) 372.3 ± 89 A 317.9 ± 89.9 A 202.2 ± 51.8 B <0.005

6MWD (m) 569.3 ± 62.4 A 390 ± 170.2 B 327 ± 134.1 B <0.005

Exacerbation 1.8 ± 1.5 A 4 ± 2.2 B <0.05

BODE 4.3 ± 3 A 6.2 ± 2.3 A ns

SGRQ Symptoms 62.9 ± 10.1 A 78.3 ± 15.2 B <0.05

SGRQ Activity 56.9 ± 31 A 86.2 ± 13.4 B <0.05

SGRQ Impact 37.8 ± 25 A 59.5 ± 20.8 A ns

SGRQ Total 47.9 ± 21.8 A 70.7 ± 16.4 B <0.005

Type I Fibre (%) 38.5 ± 11 A 26 ± 9.6 A 24.7 ± 13.5 A ns

Type II area (μ2) 2564 ± 783.8 AB 3096 ± 893.6 A 2034 ± 498.8 B <0.05

Abbreviations: COPDN COPD patients with normal, FFMI COPDL patients with COPD with low FFMI, BMI Body mass index, FFM fat free mass, FFMI fat free mass
index, MRC medical research council dyspnoea score, FEV1 forced expiratory volume in the first second, FVC forced vital capacity, PaO2 arterial oxygen partial
pressure, PaCO2 arterial carbon dioxide partial pressure, Physical Activity (V) Voorrips Questionnaire, Physical activity (L) London Chest Activity of Daily Living Scale,
QMVC quadriceps maximal voluntary contraction, 6MWD six minute walking distance, SGRQ St. George’s Respiratory Questionnaire, ns not significant, NA not
applicable. Comparisons among groups were done using ANOVA and Student-Newman-Keuls as a post-hoc test. Differences among the three different groups
were stated using letters A,B and C where sharing a letter implies no differences between these groups and having a different letter implies a statistical difference
in the post-hoc test
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and 0.6% CHAPS, containing phosphatase inhibitors,
protease inhibitors and benzonase) was added to 15 mg of
each tissue sample. Protein concentration was deter-
mined by the Bradford method (Bio-Rad Laboratories,
Hercules, CA).

Two-dimensional difference gel electrophoresis (2D-DIGE)
2D-DIGE analysis including protein labeling, 2D-
electrophoresis, gel analysis and identification of pro-
teins of interest by mass spectrometry were performed
by Applied Biomics (Hayward, CA) using established
protocols (Fig. 1).

Cell culture
Human Skeletal Muscle Satellite Cells (HSkMSCs)
were purchased from Innoprot (SKELETAL MUSCLE
INNOPROFILE™, REF: P10976). These cells were isolated

by ScienCell Research Laboratories from human muscle
of the pectoral girdle. Cell culture media kits were pur-
chased from the same company (Innoprot REF: P60132).
The satellite cells were grown to confluent myoblasts in
poly-L-lysine coated flasks (2 μg/cm2, T-75 flask) accord-
ing to the manufacturer’s guide. Myoblasts were differenti-
ated into myotubes as previously described [36].

DOT1L gene kockdown in HSkMSC by siRNA
siRNA design
For siRNA-mediated down-regulation of DOT1L, a
specific validated target sequence was purchased from
Ambicon, Life Technologies (Silencer® siRNA (DOT1L,
siRNA ID: 112262) and transient transfection of siRNA
was performed. siRNA experiments were conducted
using a stock solution of 10uM siRNA at a final concen-
tration of 30 pmol duplex siRNA per well in a six well

Fig. 1 Vastus lateralis protein expression profiling by 2D DIGE. Representative 2D-DIGE images (from Gel1) showing differentially expressed protein
spots. a 2D images of two samples; COPDL and COPDN subjects; respectively labelled with Cy3 (green spots, COPDN) and Cy5 (red spots, COPDL)
and the corresponding overlap, generated by ImageQuant software (pH range 4–9 from left to right in the horizontal dimension; MW range
15 kDa-150 kDa from bottom to top in the vertical dimension). b Images were further analyzed by DeCyder Image analysis software to detect the
differentially expressed protein spots (white circles). Purple circles correspond to spots not include in the final selection

Lakhdar et al. Respiratory Research  (2017) 18:81 Page 4 of 10



plate following the manufacture protocol. For transfection
into the cells, Lipofectamine® 2000 Transfection Reagent
(Ambicon, Life Technologies) was used according to the
manufacturer’s protocol.

siRNA cell transfection
Human skeletal muscle satellite cells were transferred in
six well plates at 2–3 104 cells/cm2. At 70–80%
confluency, myoblasts were transfected following the
manufacturer’s guide and as previously described [37, 38].

Quantitative RT-PCR
Total cellular RNA was prepared from the cells using an
NucleoSpin® RNA kit (Macherey-Nagel, Fisher Scientific
UK) and 0.5 ug of the RNA was then reverse transcribed
to cDNA using a High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems). For quantitative RT-PCR
analysis, the cDNA was combined with gene-specific for-
ward and reverse primers for DOT1L and p21 WAF1/Cip1/
CDKN1A a SYBR Green PCR master mix and subjected to
real time fluorescence detection PCR using an ABI Prism
7900 Sequence Detection System (Applied Biosystems,
Foster City, CA, USA).

Western Blot Analysis
Cells were harvested and protein concentration was
determined. DOT1Landp21 WAF1/Cip1 protein level
was determined by immunoblotting using antibodies
against DOT1L (Novus Biologicals, NB100-40845) and
p21 WAF1/Cip1 (ab79601) (Abcam, Bristol, UK).

Statistical analysis
For 2D-DIGE proteomic analysis, the data were analysed
using Student-t test to compare between the patient
groups (COPDN, COPDL) and the healthy controls.
Gene expression q-PCR data and immunoblotting re-
sults for DOT1Landp21 WAF1/Cip1/CDKN1A after gene
knockdown are expressed as mean ± SEM. Comparisons
between the groups were performed using Mann–Whitney
U test for non-parametric variables. Correlation ana-
lysis between variables was conducted using Pearson’s
correlation index for continuous variables. A p value <0.05
was taken as statistically significant. The statistics were
conducted using the statistical package SAS version 9.3
(SAS Institute Inc, Cary, NC, USA).

Results
The anthropometric characteristics and pulmonary func-
tion data of study subjects are depicted in Table 1. Both
groups of COPD patients had chronic airflow limitation
compared to healthy controls (C) all of who had normal
spirometry, but there were no differences in spirometry
between COPDN and COPDL.

Compared to COPDN, COPDL had significantly lower
BMI, FFM and FFMI (as expected by the study design),
poorer HRQoL with higher values in all of the domains
of the St. George’s respiratory questionnaire, and worse
muscle function as assessed by QMVC. No statistical
differences in physical activity measured by the Voorrips
questionnaire (PAV) or activities of daily living (ADL)
assessed with the LCADL (PAL) were seen between the
COPD groups although a trend towards lower PAL was
observed in COPDL.
Both COPD groups showed a redistribution of muscle

fibre type with a higher proportion of type II fibres and
a lower proportion of type I in comparison to healthy
controls; however this did not reach statistical signifi-
cance. Type II fibre area was significantly reduced in
COPDL in comparison with COPDN (Table 1).

Proteomic analysis
To search for differentially expressed proteins (DEPs),
we performed three pair-wise class comparisons: COPDL

vs. COPDN, COPDL vs. C and COPDN vs. C. A list with
96 protein spots was selected from the analysis using the
DeCyder software. These spots corresponded to the
most prominent changes in terms of fold-change and/or
statistical significance that could be detected. Among
this list, there were some significant changes in protein
expression in the paired groups (p < 0.05): 50 spots were
differentially expressed comparing COPDN and Controls,
whereas, 41 spots were found differentially expressed
comparing COPDL and the Control group and 37 spots
when comparing COPDL and COPDN (Additional file 1:
Table S1).
In order to select the most relevant DEPs related to

muscle wasting in COPD, we focused on the list of 37
DEPs between COPDL and COPDN. To strengthen the
biological relevance of these proteins, we further se-
lected from this list 20 spots that were also differen-
tially expressed between COPDL and C. We further
excluded proteins that were differentially expressed
between COPDN and the control group, as both sub-
groups have normal muscle bulk and these proteins
may not be relevant to the process of muscle wasting.
The number of spots was therefore reduced to 11.
These spots were further extracted from the gel and

the proteins identified by mass spectrometry (Table 2).
These spots represented 7 proteins (2 proteins were

represented by three different spots). Among these, 3
proteins were up regulated; Serum albumin (ALBU),
Heat shock protein beta-1 (HSPB1) and Alpha-crystallin
B chain (CRYAB) and 4 proteins Histone-lysine N-
methyltransferase, H3 lysine-79 specific (DOT1L),
Troponin T, slow skeletal muscle (TNNT1), Myozenin-1
(MYOZ1) and Myosin light chain 1/3, skeletal muscle
isoform (MYL1) were down regulated (Table 2).
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The up-regulated proteins are involved in protection
against oxidative stress (HSPB1) and in muscle homeostasis
(CRYAB). Whereas, the down regulated protein are in-
volved in cell cycle regulation (DOT1L), muscle cell
proliferation (MYL1), type II fibres promotion (MYOZ1),
and are components of the thin filament (TNNT1).
DOT1L was down regulated with a significant fold change
(FC) in COPDL compared with both COPDN (P value =
0.0065, FC = −2.25) and C (P value = 0.014, FC = −1.45).

DOT1L gene knockdown
In our previous microarray analysis we found a differential
expression of genes related to premature ageing/cell cycle
arrest [18]. Because down regulation of DOT1L has been
reported in relation to cell cycle arrest, we explored the
effect of silencing DOT1L on cell arrest markers in
Human Skeletal Muscle Satellite Cells in vitro, in par-
ticular on p21 WAF1/Cip1/CDKN1A that was found up-
regulated in our previous study.
The results confirmed that the siRNA sequence led to

significant reduction in DOT1L gene expression, and
protein level (Fig. 2) and that the siRNA DOT1L
reduced mRNA content was related to an up-regulation of
p21 WAF1/Cip1/CDKN1A gene expression and protein
content (P < 0.05) (Fig. 3).

Discussion
This study shows changes in protein expression in
vastus lateralis muscle of COPD patients with skeletal
muscle wasting using the highly sensitive 2D-DIGE
technique combined with mass spectrometry analysis.
We identified up-regulated proteins associated with
protection against oxidative stress and muscle homeostasis,

and down-regulated proteins involved in cell cycle arrest,
growth regulation, energy production and muscle forma-
tion. Among the down-regulated proteins was the histone
methyltransferase DOT1L, a critical regulator of the cell
cycle. In addition, we showed that DOT1L gene silencing
in human skeletal muscle satellite cells in vitro is signifi-
cantly related to up regulation of p21 WAF1/Cip1/CDKN1A,
a marker of cell arrest and senescence.
In this analysis, we selected a group of DEPs using

restricted criteria to strengthen the biological relevance of
these proteins in the process of muscle wasting based on:
a) that they were differentially expressed between COPDL

and COPDN, b) were also differentially expressed between
COPDL and C, c) they were not differentially expressed
between COPDN and C (both groups with normal FFMI)
[18]. These criteria reduced the list of DEPs to a set of
seven proteins identified by mass spectrometry potentially
involved in the process of muscle wasting in COPDL.
One of the proteins whose expression was found

significantly decreased in COPDL is DOT1L (disruptor
of telomeric silencing-1), an evolutionarily conserved
histone methyltransferase that methylates lysine 79
located within the globular domain of histone H3.
Methylation of H3K79 is involved in the regulation of
telomeric silencing, cellular development, cell-cycle
checkpoint, DNA repair, and regulation of transcrip-
tion [39, 40]. Several studies show that DOT1L is a
critical regulator of the cell cycle [41, 42]. Overall,
DOT1L is required to maintain genomic and chromo-
somal stability. It has been shown that deficiency of
DOTL1 leads to chromosomal miss-aggregation [43]
and that this chromosomal instability leads to cell
cycle arrest at the G1 phase and induced senescence,

Table 2 Proteins differentially expressed between COPDLvs COPDNand COPDLvs C groups

COPDLvs COPDN COPDLvs C

Assigned spot
number

Protein name Protein symbol P value Av. Ratio P value Av. Ratio Protein relevant function

17 Serum albumin ALBU 0.0053 1.67 0.022 1.36 Transportation of substances
in the blood.

67 Up
regulated

Heat shock protein beta-1 HSPB1 0.011 1.3 6.7E-05 1.48 Heat shock, ROS scavenger

75 Alpha-crystallin B chain CRYAB 0.017 1.38 0.00026 1.53 Heat shock, muscle homeostasis

1 Histone-lysine
N-methyltransferase,
H3 lysine-79 specific

DOT1L 0.0065 −2.25 0.014 −1.45 DNA repair, deficiency leads to
cell arrest

91 Down
regulated

Myosin light chain 1/3,
skeletal muscle isoform

MYL1 0.049 −2.13 0.0048 −2.38 Myosin light chain expressed
in Type II fibres, muscle cell
proliferation

48 Troponin T, slow skeletal
muscle

TNNT1 0.025 −2.6 0.023 −2.21 Component of the thin filament
of the sarcomere

60 Myozenin-1 OS = Homo
sapiens

MYOZ1 0.00086 −2.44 0.029 −1.63 Promote type II fibres, calcineurin-
interacting proteins

Seven proteins were identified that full fill the criteria set for the analysis. Student t test was used to compare between different groups, p-value <0.05 significant
(bold). Av. Ratio: Average. Ratio; fold change a positive value means increased ratio, a negative value means decreased ratio
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thus disturbing proliferation of human cancer cells
[43]. Furthermore, the transcription profiles of
DOT1L-deficient mouse embryonic stem cells (ESCs)
and their differentiated derivatives contain a high pro-
portion of miss-regulated genes with known functions
in cell cycle and cellular proliferation that may repre-
sent direct targets of DOT1L regulation [44].
We have previously shown, by different methodolo-

gies, an up-regulation of the cyclin-dependent kinase
inhibitor p21 WAF1/Cip1 in COPD patients with muscle
wasting [18]. p21 WAF1/Cip1protein, encoded by the gene
CDKN1A, binds to and inhibits the activity of several
cyclin-dependent kinases (CDKs), and thus functions as
a regulator of cell cycle progression [45]. In addition to

growth arrest, p21 WAF1/Cip1 can mediate cellular senes-
cence [46, 47].
To test the potential association between down-

regulation of DOT1L and up-regulation of p21 WAF1/

Cip1we used siRNA to silence DOT1L in human skel-
etal muscle satellite cells (HSkMSCs) and measured
the effect on gene expression and protein levels of
CDKN1A. Knock down of DOT1L in this cell line
resulted in an up-regulation of CDKN1A gene ex-
pression and protein levels of p21 WAF1/Cip1.
Our findings are in agreement with previous studies

showing an association between DOT1L deficiency and
inhibition of cell proliferation due to G0/G1 cell-cycle

Fig. 2 siRNA mediated gene silencing of DOT1L validated by Q-PCR
and western blot. The results show a down regulation of DOT1L
mRNA expression (a) and a decrease of DOT1L protein level (b).
Empty bars are untreated cells and solid bars are transfected cells.
Results from HSkMSC cultures derived from three different experiments
on cells at passage three, Graph is presenting means ± SEM. *,
p-value < 0.05 siRNA treated cells compared to controls

Fig. 3 siRNA knockdown of DOT1L up regulates the expression of
CDKN1A mRNA (a) and p21 protein level (b). Empty bars are untreated
cells and solid bars are transfected cells. HSkMSC cultures derived from
three different experiments on cells at passage three, Graph is presenting
means ± SEM. *, p-value < 0.05 siRNA treated cells compared to controls
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arrest in MLL-AF9 [48]. A study investigating several
cyclin-dependent kinase inhibitors (CKI), (INK4 (p16INK4a,
p15INK4b, p18INK4c, and p19INK4d) and CIP/KIP (p21CIP/
WAF1, p27KIP1, and p57KIP2)) in DOT1L deficient NCI-
H1299 cells and A549 cells have shown that DOT1L
deficiency up-regulated p21 WAF1/Cip1 expression, but
down-regulated other CKIs [43]. The authors suggested
that the transcriptional up-regulation of p21 WAF1/Cip1

in DOT1L-deficient A549 cells induced the hypo-
phosphorylation of CDK2 and Rb, which inhibits the
progression from G1 to S phase [43]. The mechanism
by which the DOT1L down regulation interferes with
the expression of specific CKIs remains to be eluci-
dated. Also further investigation is needed to shed light
on the mechanisms by which DOT1L-down regulation
interacts with other factors associated with cell prolifer-
ation and cell cycle arrest and regulates senescence in
COPD patients with muscle wasting.
In this study, we found an increase of the protein

levels of HSPB1 and CRYAB in COPDL. HSPB1 partici-
pates in the regulation of apoptosis, protects the cell
against oxidative stress, and is involved in the regulation
of the cytoskeleton [49]. In turn HSPB1 has been related
to better fatigue resistance [50] and has been shown to
be up-regulated in animal models of diabetes-related
muscle weakness [51]. Moreover, it has been reported
that the chaperone effect of CRYAB on the cytoskeleton
in relation to tubulin/microtubule, is a key mechanism
for muscle adaptation, muscle differentiation and protec-
tion from atrophy [52]. Increased levels of molecular
heat shock proteins reported in this study is in line with
well documented evidence of oxidative and nitrosative
stress in COPD patient’s peripheral muscle [53–57],
especially in patients with low body mass index (BMI)
[57] and hypoxemia [53] and may reflect an attempt of
the cell to defend itself against these insults.
Our results also revealed an up-regulation of ALBU

and down-regulation of other structural proteins MYL1,
TNNT1, and MYOZ1 in both COPDL compared to
COPDN and COPDL compared to C. The latter is consist-
ent with the fibre type distribution in our population, show-
ing a tendency towards a decrease in Type I fibres, with an
increase in the proportion of Type II fibres in the muscle in
COPDL. The differential expression of structural proteins
MYL1, TNNT1, MYOZ1 in our population further
highlights the documented structural changes [58] in vastus
lateralis muscle of COPD patients with muscle atrophy.

Limitation of the study
In spite of the efforts made in matching the populations,
healthy control subjects present differences in fat free
mass index (FFMI) compared to the COPD patients with
normal FFMI. However, both groups (COPDN and C)
have FFMI levels above what is considered normal in

these populations. No differences were seen in fat free
mass (FFM) or BMI between these groups. As these groups
were used to select biological relevant proteins related to
muscle wasting from the DEPs between COPDN and
COPDL, by excluding from this list those that were not
differentially expressed between COPDN and C, we do not
think that this affects the conclusions of the present study.
It is worthwhile mentioning that p21 was not identified

as an up-regulated protein by the technology used in the
present study. We cannot exclude that this protein is
among the other differentially expressed proteins detected
but still not identified by MS. Although unlikely, another
possible explanation is that this protein is not included
among the resolved spots in the 2D gels since p21 has a
low molecular mass (18 kDa) and the theoretical MW
range is 15 kDa-150 kDa from bottom to top. In more
general terms, although the 2D-DIGE is a sensitive, accur-
ate and reproducible technique, it faces the inherent limi-
tations of gel-based proteomics, regarding the proteomic
coverage. In any event, results previously published by our
group have demonstrated, by different methodologies, an
up-regulation of p21 both at the gene and protein level in
COPD patients with muscle wasting [18].

Conclusions
Our study showed that 2D-DIGE coupled with MS is
useful technique to identify differentially expressed proteins
related to muscle wasting in patients with COPD. These re-
sults complement our previous findings on the transcrip-
tome of these patients and strengthen the evidence that
premature ageing, along with oxidative stress, may play a
role in muscle wasting in COPD. p21 WAF1/Cip1/CDKNA1
might represent a target of DOT1L in vastus lateralis
muscle of COPD patients.
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Additional file 1: A detailed methodology is provided: Table S1:
Differentially expressed spots between different groups comparing
COPDN vs C, COPDL vs C and COPDL vs COPDN using the
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technology. (DOCX 64 kb)
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