24 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Navigare la storia: considerazioni sulla creazione di un portale di storia ambientale

    No full text
    This article introduces the experience of the Environment & Society Portal (www.environmentandsociety.org), one of the most important projects developed by the Rachel Carson Center for Environment and Society in Munich. The Environment & Society Portal is online from the beginning of 2012 and it provides the academic community and the general public with original essays, virtual tours and multimedia features, books, articles, sources and several materials related to the so-called ‘environmental humanities’

    Extremely Small-magnitude Accelerations Enhance Bone Regeneration: A Preliminary Study

    No full text
    High-frequency, low-magnitude accelerations can be anabolic and anticatabolic to bone. We tested the hypothesis that application of these mechanical signals can accelerate bone regeneration in scaffolded and nonscaffolded calvarial defects. The cranium of experimental rats (n = 8) in which the 5-mm bilateral defects either contained a collagen scaffold or were left empty received oscillatory accelerations (45 Hz, 0.4 g) for 20 minutes per day for 3 weeks. Compared with scaffolded defects in the untreated control group (n = 6), defects with a scaffold and subject to oscillatory accelerations had a 265% greater fractional bone defect area 4 weeks after the surgery. After 8 weeks of healing (1-week recovery, 3 weeks of stimulation, 4 weeks without stimulation), the area (181%), volume (137%), and thickness (53%) of the regenerating tissue in the scaffolded defect were greater in experimental than in control animals. In unscaffolded defects, mechanical stimulation induced an 84% greater bone volume and a 33% greater thickness in the defect. These data provide preliminary evidence that extremely low-level, high-frequency accelerations can enhance osseous regenerative processes, particularly in the presence of a supporting scaffold

    Antihistaminica

    No full text
    corecore