198 research outputs found

    The Influence of Climate on Root Depth: A Carbon Cost-Benefit Analysis

    Get PDF
    The depth of the active root zone identifies the portion of the subsurface that exchanges soil water with the atmosphere. The depth of this zone is determined by a number of factors, and this work focuses on the drivers related to water and climate. An analytical expression for a water-optimal root depth is developed by equating the marginal carbon cost and benefit of deeper roots. Soil-moisture dynamics are driven by stochastic rainfall, and the predicted root depth is a function climate, soil, and vegetation characteristics. Consistent with results from the field, deep roots coincide with environments for which precipitation and potential evapotranspiration are approximately equal. For water-limited ecosystems, increases in the wetness of the climate produce deeper roots, and root depth is more sensitive to changes in the depth of rain events than to their frequency. In wet environments, the opposite is true; root depth generally decreases with increasing wetness and shows greater sensitivity to changes in rainfall frequency than intensity

    PENGARUH DISIPLIN KERJA DAN KOMPETENSI TERHADAP KINERJA KARYAWAN PT RAMAYANA LESTARI SENTOSA DI BATAM

    Get PDF
    This study aims to examine the influence of Work Discipline and Competence on the performance of employees of PT Ramayana Lestari Sentosa in Batam. This research uses a quantitative approach and nonprobability sampling techniques with a saturated sampling method. The data collection technique used a questionnaire with a Likert scale which was filled in by 103 respondents. Data were analyzed using SPSS version 25. The test results for the work discipline variable were t count 9.619> t table 1.98397 and sig t 0.000 <α 0.05. The result of the competency variable test is t count 4.719> t table 1.98397 and sig t 0.000 <α 0.05. The results of the f test are f count 201.661> f table 3.09 and a significance of 0.000 <alpha 0.05, it can be concluded that work discipline and competence partially and simultaneously have a significant effect on the performance of employees of PT Ramayana Lestari Sentosa in Batam. The test results of the coefficient of determination have a value of 0.801, which means that 80.1% of variations in employee performance variables can be explained by work discipline and competency variables, the remaining 19.9% ​​is explained by variables not examined in this study

    Uncertainty Analysis of a Spatially Explicit Annual Water-Balance Model: Case Study of the Cape Fear Basin, North Carolina

    Get PDF
    There is an increasing demand for assessment of water provisioning ecosystem services. While simple mod- els with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by un- certainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko hydro- logical framework. Our study involved the comparison of 10 subcatchments ranging in size and land-use configuration, in the Cape Fear basin, North Carolina. We analyzed the model sensitivity to climate variables and input parameters, and the structural error associated with the use of the Budyko frame- work, a lumped (catchment-scale) model theory, in a spa- tially explicit way. Comparison of model predictions with ob- servations and with the lumped model predictions confirmed that the InVEST model is able to represent differences in land uses and therefore in the spatial distribution of water provi- sioning services. Our results emphasize the effect of climate input errors, especially annual precipitation, and errors in the ecohydrological parameter Z, which are both comparable to the model structure uncertainties. Our case study supports the use of the model for predicting land-use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While some results are context-specific, our study provides general insights and methods to help identify the regions and decision contexts where the model predictions may be used with confidence

    Curve Number Approach to Estimate Monthly and Annual Direct Runoff

    Get PDF
    This paper establishes a novel approach to estimate monthly and annual direct runoff by combining the curve number method of the Natural Resources Conservation Service with an exponential distribution of rainfall depths. The approach was tested against observed rainfall and runoff for 544 watersheds throughout the contiguous United States. For more than half of the watersheds, the performance of the new approach is indistinguishable from the application of the method to daily rainfall when curve numbers are determined via calibration. For all watersheds, the uncertainty introduced by the approximation of the distribution of rainfall depths is far less than the uncertainty associated with the use of tabulated curve numbers based on soil and land-cover characteristics. The new approach does not appreciably increase the overall uncertainty associated with the application of the curve number method in ungauged watersheds. The approach provides reasonable estimates of monthly and annual direct runoff that can inform land-management decisions when daily rainfall records are unavailable

    Predicting Dry‐Season Flows with a Monthly Rainfall–Runoff Model: Performance for Gauged and Ungauged Catchments

    Get PDF
    Hydrologic models are useful to understand the effects of climate and land‐use changes on dry‐season flows. In practice, there is often a trade‐off between simplicity and accuracy, especially when resources for catchment management are scarce. Here, we evaluated the performance of a monthly rainfall–runoff model (dynamic water balance model, DWBM) for dry‐season flow prediction under climate and land‐use change. Using different methods with decreasing amounts of catchment information to set the four model parameters, we predicted dry‐season flow for 89 Australian catchments and verified model performance with an independent dataset of 641 catchments in the United States. For the Australian catchments, model performance without catchment information (other than climate forcing) was fair; it increased significantly as the information to infer the four model parameters increased. Regressions to infer model parameters from catchment characteristics did not hold for catchments in the United States, meaning that a new calibration effort was needed to increase model performance there. Recognizing the interest in relative change for practical applications, we also examined how DWBM could be used to simulate a change in dry‐season flow following land‐use change. We compared results with and without calibration data and showed that predictions of changes in dry‐season flow were robust with respect to uncertainty in model parameters. Our analyses confirm that climate is a strong driver of dry‐season flow and that parsimonious models such as DWBM have useful management applications: predicting seasonal flow under various climate forcings when calibration data are available and providing estimates of the relative effect of land use on seasonal flow for ungauged catchments

    Potential Effects of Landscape Change on Water Supplies in the Presence of Reservoir Storage

    Get PDF
    This work presents a set of methods to evaluate the potential effects of landscape changes on water supplies. Potential impacts are a function of the seasonality of precipitation, losses of water to evapotranspiration and deep recharge, the flow-regulating ability of watersheds, and the availability of reservoir storage. For a given reservoir capacity, simple reservoir simulations with daily precipitation and streamflow enable the determination of the maximum steady supply of water for both the existing watershed and a hypothetical counter-factual that has neither flow-regulating benefits nor any losses. These two supply values, representing land use end-members, create an envelope that defines the water-supply service and bounds the effect of landscape change on water supply. These bounds can be used to discriminate between water supplies that may be vulnerable to landscape change and those that are unlikely to be affected. Two indices of the water-supply service exhibit substantial variability across 593 watersheds in the continental United States. Rcross, the reservoir capacity at which landscape change is unlikely to have any detrimental effect on water supply has an interquartile range of 0.14–4% of mean-annual-streamflow. Steep, forested watersheds with seasonal climates tend to have greater service values, and the indices of water-supply service are positively correlated with runoff ratios during the months with lowest flows

    Co-designed Land-use Scenarios and their Implications for Storm Runoff and Streamflow in New England

    Get PDF
    Landscape and climate changes have the potential to create or exacerbate problems with stormwater management, high flows, and flooding. In New England, four plausible land-use scenarios were co-developed with stakeholders to give insight to the effects on ecosystem services of different trajectories of socio-economic connectedness and natural resource innovation. With respect to water, the service of greatest interest to New England stakeholders is the reduction of stormwater and flooding. To assess the effects of these land-use scenarios, we applied the Soil and Water Assessment Tool to two watersheds under two climates. Differences in land use had minimal effects on the water balance but did affect high flows and the contribution of storm runoff to streamflow. For most scenarios, the effect on high flows was small. For one scenario—envisioned to have global socio-economic connectedness and low levels of natural resource innovation—growth in impervious areas increased the annual maximum daily flow by 10%, similar to the 5–15% increase attributable to climate change. Under modest population growth, land-use decisions have little effect on storm runoff and high flows; however, for the two scenarios characterized by global socio-economic connectedness, differences in choices regarding land use and impervious area have a large impact on the potential for flooding. Results also indicate a potential interaction between climate and land use with a shift to more high flows resulting from heavy rains than from snowmelt. These results can help inform land use and development, especially when combined with assessments of effects on other ecosystem services

    Models of Soil Moisture Dynamics in Ecohydrology: A Comparative Study

    Get PDF
    An accurate description of plant ecology requires an understanding of the interplay between precipitation, infiltration, and evapotranspiration. A simple model for soil moisture dynamics, which does not resolve spatial variations in saturation, facilitates analytical expressions of soil and plant behavior as functions of climate, soil, and vegetation characteristics. Proper application of such a model requires knowledge of the conditions under which the underlying simplifications are appropriate. To address this issue, we compare predictions of evapotranspiration and root zone saturation over a growing season from a simple bucket-filling model to those from a more complex, vertically resolved model. Dimensionless groups of key parameters measure the quality of the match between the models. For a climate, soil, and woody plant characteristic of an African savanna the predictions of the two models are quite similar if the plant can extract water from locally wet regions to make up for roots in dry portions of the soil column; if not, the match is poor

    Potential Effects of Landscape Change on Water Supplies in the Presence of Reservoir Storage

    Get PDF
    This work presents a set of methods to evaluate the potential effects of landscape changes on water supplies. Potential impacts are a function of the seasonality of precipitation, losses of water to evapotranspiration and deep recharge, the flow-regulating ability of watersheds, and the availability of reservoir storage. For a given reservoir capacity, simple reservoir simulations with daily precipitation and streamflow enable the determination of the maximum steady supply of water for both the existing watershed and a hypothetical counter-factual that has neither flow-regulating benefits nor any losses. These two supply values, representing land use end-members, create an envelope that defines the water-supply service and bounds the effect of landscape change on water supply. These bounds can be used to discriminate between water supplies that may be vulnerable to landscape change and those that are unlikely to be affected. Two indices of the water-supply service exhibit substantial variability across 593 watersheds in the continental United States. Rcross, the reservoir capacity at which landscape change is unlikely to have any detrimental effect on water supply has an interquartile range of 0.14–4% of mean-annual-streamflow. Steep, forested watersheds with seasonal climates tend to have greater service values, and the indices of water-supply service are positively correlated with runoff ratios during the months with lowest flows
    • 

    corecore