92 research outputs found

    Methicillin Resistant Staphylococcus aureus ST398 in Veal Calf Farming: Human MRSA Carriage Related with Animal Antimicrobial Usage and Farm Hygiene

    Get PDF
    Introduction Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal calves and humans working and living on these farms. Methods A sample of 102 veal calf farms were randomly selected and visited from March 2007–February 2008. Participating farmers were asked to fill in a questionnaire (n = 390) to identify potential risk factors. A nasal swab was taken from each participant. Furthermore, nasal swabs were taken from calves (n = 2151). Swabs were analysed for MRSA by selective enrichment and suspected colonies were confirmed as MRSA by using slide coagulase test and PCR for presence of the mecA-gene. Spa types were identified and a random selection of each spa type was tested with ST398 specific PCR. The Sequence Type of non ST398 strains was determined. Data were analyzed using logistic regression analysis. Results Human MRSA carriage was strongly associated with intensity of animal contact and with the number of MRSA positive animals on the farm. Calves were more often carrier when treated with antibiotics, while farm hygiene was associated with a lower prevalence of MRSA. Conclusion This is the first study showing direct associations between animal and human carriage of ST398. The direct associations between animal and human MRSA carriage and the association between MRSA and antimicrobial use in calves implicate prudent use of antibiotics in farm animals

    HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.

    Get PDF
    Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought. Recently, somatic substitution, insertion/deletion and rearrangement patterns, or 'mutational signatures', were associated with BRCA1/BRCA2 dysfunction. Herein we used a lasso logistic regression model to identify six distinguishing mutational signatures predictive of BRCA1/BRCA2 deficiency. A weighted model called HRDetect was developed to accurately detect BRCA1/BRCA2-deficient samples. HRDetect identifies BRCA1/BRCA2-deficient tumors with 98.7% sensitivity (area under the curve (AUC) = 0.98). Application of this model in a cohort of 560 individuals with breast cancer, of whom 22 were known to carry a germline BRCA1 or BRCA2 mutation, allowed us to identify an additional 22 tumors with somatic loss of BRCA1 or BRCA2 and 47 tumors with functional BRCA1/BRCA2 deficiency where no mutation was detected. We validated HRDetect on independent cohorts of breast, ovarian and pancreatic cancers and demonstrated its efficacy in alternative sequencing strategies. Integrating all of the classes of mutational signatures thus reveals a larger proportion of individuals with breast cancer harboring BRCA1/BRCA2 deficiency (up to 22%) than hitherto appreciated (∼1-5%) who could have selective therapeutic sensitivity to PARP inhibition

    Computational Identification of Transcriptional Regulators in Human Endotoxemia

    Get PDF
    One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes

    Copy number signatures and mutational processes in ovarian carcinoma.

    Get PDF
    The genomic complexity of profound copy number aberrations has prevented effective molecular stratification of ovarian cancers. Here, to decode this complexity, we derived copy number signatures from shallow whole-genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases, which were validated on 527 independent cases. We show that HGSOC comprises a continuum of genomes shaped by multiple mutational processes that result in known patterns of genomic aberration. Copy number signature exposures at diagnosis predict both overall survival and the probability of platinum-resistant relapse. Measurement of signature exposures provides a rational framework to choose combination treatments that target multiple mutational processes.NIHR, Ovarian Cancer Action, Cancer Research UK Cambridge Centre, Cambridge Experimental Cancer Medicine Centr

    Meditation or Medication? Mindfulness training versus medication in the treatment of childhood ADHD: a randomized controlled trial

    Get PDF
    Background Attention-Deficit-Hyperactivity-Disorder (ADHD) is, with a prevalence of 5 %, a highly common childhood disorder, and has severe impact on the lives of youngsters and their families. Medication is often the treatment of choice, as it currently is most effective. However, medication has only short-term effects, treatment adherence is often low and most importantly; medication has serious side effects. Therefore, there is a need for other interventions for youngsters with ADHD. Mindfulness training is emerging as a potentially effective training for children and adolescents with ADHD. The aim of this study is to compare the (cost) effectiveness of mindfulness training to the (cost) effectiveness of methylphenidate in children with ADHD on measures of attention and hyperactivity/impulsivity. Methods/design A multicenter randomized controlled trial with 2 follow-up measurements will be used to measure the effects of mindfulness training versus the effects of methylphenidate. Participants will be youngsters (aged 9 to 18) of both sexes diagnosed with ADHD, referred to urban and rural mental healthcare centers. We aim to include 120 families. The mindfulness training, using the MYmind protocol, will be conducted in small groups, and consists of 8 weekly 1.5-h sessions. Youngsters learn to focus and enhance their attention, awareness, and self-control by doing mindfulness exercises. Parents will follow a parallel mindful parenting training in which they learn to be fully present in the here and now with their child in a non-judgmental way, to take care of themselves, and to respond rather than react to difficult behavior of their child. Short-acting methylphenidate will be administered individually and monitored by a child psychiatrist. Assessments will take place at pre-test, post-test, and at follow-up 1 and 2 (respectively 4 and 10 months after the start of treatment). Informants are parents, children, teachers, and researchers. Discussion This study will inform mental health care professionals and health insurance companies about the clinical and cost effectiveness of mindfulness training for children and adolescents with ADHD and their parents compared to the effectiveness of methylphenidate. Limitations and several types of bias that are anticipated for this study are discussed

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore