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Abstract 41 

The genomic complexity of profound copy-number aberration has prevented effective molecular 42 

stratification of ovarian cancers. To decode this complexity, we derived copy-number signatures 43 

from shallow whole genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) 44 

cases, which were validated on 527 independent cases. We show that HGSOC comprises a 45 

continuum of genomes shaped by multiple mutational processes that result in known patterns of 46 

genomic aberration. Copy-number signature exposures at diagnosis predict both overall survival 47 

and the probability of platinum-resistant relapse. Measuring signature exposures provides a 48 

rational framework to choose combination treatments that target multiple mutational processes. 49 

 50 
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The discrete mutational processes that drive copy-number change in human cancers are not 58 

readily identifiable from genome-wide sequence data. This presents a major challenge for the 59 

development of precision medicine for cancers that are strongly dominated by copy-number 60 

changes, including high-grade serous ovarian (HGSOC), esophageal, non-small-cell lung and 61 

triple negative breast cancers1. These tumors have low frequency of recurrent oncogenic 62 

mutations, few recurrent copy number alterations, and highly complex genomic profiles2. 63 

HGSOCs are poor prognosis carcinomas with ubiquitous TP53 mutation3. Despite efforts to 64 

discover new molecular subtypes and targeted therapies, overall survival has not improved over 65 

two decades4. Current genomic stratification is limited to defining homologous recombination-66 

deficient (HRD) tumors5-7 with approximately 20% HGSOC cases having a germline or somatic 67 

mutation in BRCA1/2 with smaller contributions from mutation or epigenetic silencing of other HR 68 

genes8. Classification using gene expression predominantly reflects the tumor microenvironment 69 

and is reliable in only a subset of patients9-11. Detailed genomic analysis using whole genome 70 

sequencing has shown frequent loss of RB1, NF1 and PTEN by gene breakage events12 and 71 

enrichment of amplification associated fold-back inversions in non-HRD tumors13. However, none 72 

of these approaches has provided a broad mechanistic understanding of HGSOC, reflecting the 73 

challenges of detecting classifiers in extreme genomic complexity. 74 

Recent algorithmic advances have enabled interpretation of complex genomic changes by 75 

identifying mutational signatures — genomic patterns that are the imprint of mutagenic processes 76 

accumulated over the lifetime of a cancer cell14. For example, UV exposure or mismatch repair 77 

defects induce distinct, detectable single nucleotide variant (SNV) signatures14. The clinical utility 78 

of these signatures has recently been demonstrated through a combination of structural variant 79 

(SV) and SNV signatures to improve the prediction of HRD15. Importantly, these studies show that 80 

tumor genomes are shaped by multiple mutational processes and novel computational approaches 81 

are needed to identify coexistent signatures. We hypothesized that specific features of copy-82 

number abnormalities could represent the imprints of distinct mutational processes, and developed 83 

methods to identify signatures from copy-number features in HGSOC. 84 

  85 

  86 

  87 
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Results 89 

Experimental design and data collection 90 

We generated absolute copy number profiles from 253 primary and relapsed HGSOC samples 91 

from 132 patients in the BriTROC-1 cohort16 using low-cost shallow whole-genome sequencing 92 

(sWGS; 0.1×) and targeted amplicon sequencing of TP53 (Supplementary Figure 1). These 93 

samples formed the basis of our copy-number signature identification. A subset of 56 of these 94 

cases had deep whole-genome sequencing (dWGS) performed for mutation analysis and 95 

comparison with sWGS data. Independent data sets for validation included 112 dWGS HGSOC 96 

cases from PCAWG17 and 415 HGSOC cases with SNP array and whole exome sequence from 97 

TCGA8. Supplementary Figure 1a shows the REMARK diagram for selection of BriTROC-1 98 

patients. Supplementary Figure 1b outlines which samples were used in each analysis across the 99 

three cohorts. Clinical data for the BriTROC-1 cohort are summarized in Supplementary Table 1 100 

and Supplementary Figure 2.  101 

Identification and validation of copy-number signatures 102 

To identify copy-number (CN) signatures, we computed the genome-wide distributions of six 103 

fundamental CN features for each sample: the breakpoint count per 10MB, the copy-number of 104 

segments, the difference in CN between adjacent segments, the breakpoint count per 105 

chromosome arm, the lengths of oscillating CN segment chains and the size of segments. These 106 

features were selected as hallmarks of previously reported genomic aberrations, including 107 

breakage-fusion-bridge cycles18, chromothripsis19 and tandem duplication20,21.  108 

We applied mixture modelling to separate the copy-number feature distributions from 91 BriTROC-109 

1 samples with high quality CN profiles into mixtures of Poisson or Gaussian distributions. This 110 

resulted in a total of 36 mixture components (Figure 1a). For each sample, the posterior probability 111 

of copy-number events arising from these components was computed and summed. These sum-112 

of-posterior vectors were then combined to form a sample-by-component sum-of-posteriors matrix. 113 

To identify copy-number signatures, this matrix was subjected to non-negative matrix factorization 114 

(NMF)22, a method previously used for deriving SNV signatures14.  115 

NMF identified seven CN signatures (Figure 1a), as well as their defining features and exposures 116 

in each sample. The optimal number of signatures was chosen using a consensus from 1000 117 

initializations of the algorithm and 1000 random permutations of the data combining four model 118 

selection measures (Supplementary Figure 3). We found highly similar component weights for the 119 

signatures in the two independent cohorts (PCAWG-OV and TCGA), demonstrating the robustness 120 

of both the methodology and the copy-number features (Figure 1b, P<9e-05, median r=0.86. 121 
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Supplementary Table 2), despite a significant difference in exposures to CN signatures 2, 3, 4 and 122 

5 between the cohorts (P<0.05, two-sided Wilcoxon rank sum test, Supplementary Figure 4).  123 

Linking copy-number signatures with underlying mutational processes 124 

The majority of cases analysed exhibited multiple signature exposures suggesting that HGSOC 125 

genomes are shaped by more than one mutational process. As our signature analysis reduced this 126 

genomic complexity into its constituent components, we were able to link the individual copy-127 

number signatures to their underlying mutational processes. To do this, we used the component 128 

weights identified by NMF to determine which pattern of global or local copy-number change 129 

defined each signature. For example, for CN signature 1, the highest weights were observed for 130 

components representing low numbers of breakpoints per 10MB, long genomic segments and two 131 

breaks occurring per chromosome arm (Figure 2a, Supplementary Figure 5). Two breaks per 132 

chromosome arm suggested that the mutational process underlying this signature might be 133 

breakage-fusion-bridge (BFB) events18.  134 

To test this hypothesis, we correlated CN signature 1 exposures with mutation data, SNV 135 

signatures, and other measures derived from deep WGS and exome sequencing (Figure 2b-e, 136 

Supplementary Figures 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8). CN signature 1 137 

was anti-correlated with sequencing estimates of telomere length (r=-0.32, P=0.009), consistent 138 

with BFB events. In addition, CN signature 1 was positively correlated with amplification-139 

associated fold-back inversion structural variants (r=0.36, P=0.02), which have been strongly 140 

implicated in BFB events23 and have also been associated with inferior survival in HGSOC13. CN 141 

signature 1 was also enriched in cases with oncogenic RAS signaling, including NF1 loss and 142 

mutated KRAS (p=5e-06, Mann-Whitney test), which has previously been shown to induce 143 

chromosomal instability as a result of aberrant G2 and mitotic checkpoint controls and 144 

missegregation24,25. Taken together, these data provide independent evidence for BFB arising as a 145 

result of oncogenic RAS signaling and telomere shortening as the underlying mechanism for CN 146 

signature 1. 147 

We applied these approaches to the remaining signatures to identify statistically significant 148 

genomic associations using a false discovery rate <0.05 (Figure 2b-e, Figure 3, Supplementary 149 

Figures 5, 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8).  150 

CN signature 2 showed frequent breakpoints per 10MB, single changes in copy-number (resulting 151 

in 3 copies), chains of oscillating copy-number, and was significantly correlated with tandem 152 

duplicator phenotype scores (r=0.3, P=0.004) and SNV signature 5 (r=0.26, P=0.02). In addition, 153 

this signature was enriched in patients with mutations in CDK12 (P=0.02, Mann-Whitney test, 154 

Supplementary Table 6), in keeping with previous studies that have demonstrated large tandem 155 

duplication in cases with inactivating CDK12 mutations26.  156 
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CN signature 4 was characterised by high copy-number states (4-8 copies) and predominant copy-157 

number change-points of size 2. This pattern indicates a mutational process of late whole-genome 158 

duplication (WGD)27. Significantly increased signature 4 exposure in cases with aberrant PI3K/AKT 159 

signaling provided further support for late WGD as oncogenic PIK3CA induces tolerance to 160 

genome doubling28 (P=2e-22, Mann-Whitney test, mutation of PIK3CA or amplification of AKT, 161 

EGFR, MET, FGFR3 and ERBB2). Signature 4 was also seen at higher levels in cases with 162 

mutations in Toll-like receptor signaling cascades (P=2e-07), interleukin signaling pathways (P=3e-163 

24) and CDK12 (P=0.0009), as well as those with amplified CCNE1 (P=2e-10) and MYC (P=9e-164 

12). It was also significantly correlated with telomere length (r=0.46, P=4e-05).   165 

CN signature 6 showed extremely high copy-number states and high copy-number change-points 166 

for small segments interspersed among larger, lower-copy segments. This suggests a mutational 167 

process resulting in focal amplification. Increased signature 6 exposure was associated with 168 

mutations across diverse pathways, including aberrant G1/S cell cycle checkpoint control (through 169 

either amplification of CCNE1, CCND1, CDK2, CDK4 or MYC, deletion/inactivation of RB1 or 170 

mutation in CDK12), Toll-like receptor signaling cascades and PI3K/AKT signaling (P<0.05). 171 

However, as many of these statistical associations are marked by gene amplification, it is difficult 172 

to determine whether the copy number states represent causal events or are simply a 173 

consequence of focal amplification. Exposure to CN signature 6 was also positively correlated with 174 

age at diagnosis (r=0.31, P=6e-12) and age-related SNV signature 114 (r=0.43, P=3e-06).  175 

CN signature 5 was significantly associated with predicted chromothriptic-like events using the 176 

Shatterproof algorithm29 (r=0.44, P=2e-03). Chromothripsis is considered rare in HGSOC12,27,30. 177 

However, the key component of this signature—the presence of copy-number change points 178 

centered at 0.5 copies—suggests that the events are subclonal. This implies that chromothripsis 179 

may be an underestimated oncogenic mechanism in HGSOC that could reflect ongoing formation 180 

and rupture of micronuclei31.  181 

CN signature 3 was characterized by an even distribution of breaks across all chromosomes, and 182 

copy number changes from diploid to single copy (LOH). CN signature 3 was significantly enriched 183 

in cases with mutations in BRCA1 and BRCA2, and other HR genes including BARD1, PALB2 and 184 

ATR (P=0.002, Mann-Whitney test). It was also correlated with the HRD-related SNV signature 3 185 

(r=0.32, P=0.002) and anti-correlated with age at diagnosis and age-related SNV signature 1 186 

(P<0.05). CN signature 3 was also enriched in cases with loss of function mutations in PTEN 187 

(P=0.002, Mann-Whitney test). Taken together, these data suggest that CN signature 3 is driven 188 

by BRCA1/2-related HRD mechanisms.  189 

CN signature 7, like CN signature 3, also demonstrated an even distribution of breaks across all 190 

chromosomes. By contrast with CN signature 3, single copy-number changes were observed from 191 

a tetraploid rather than a diploid state (Figure 3). Although there was correlation with the HRD-192 
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related SNV signature 3, there was no enrichment with BRCA1/2 mutation, suggesting alternative 193 

HRD mechanisms as potential mutational processes.  194 

We also investigated relationships between CN signatures. BRCA1 dysfunction and CCNE1 195 

amplification have been shown to be mutually exclusive in HGSOC32, and we observed that CN 196 

signature 3 (BRCA1/2 HRD) and CN signature 6 (marked by aberrant G1/S cell cycle checkpoint 197 

control) showed mutually exclusive associations (Figure 2b-e). Loss of BRCA1 and BRCA2 are 198 

early driver events in HGSOC, and to investigate acquisition of additional mutational processes, 199 

we studied four BriTROC-1 cases with deleterious germline BRCA2 mutations and confirmed 200 

somatic loss of heterozygosity at BRCA2 (Figure 4). A diverse and variable number of CN 201 

signatures was seen in these cases, including substantial exposures to CN signature 1 (RAS 202 

signaling) in three of the four cases.  203 

Copy-number signatures predict overall survival 204 

We next explored the association between individual CN signature exposures and overall survival 205 

using a combined dataset of 575 diagnostic samples with clinical outcomes. We trained a 206 

multivariate Cox proportional hazards model on 417 cases and tested this on the remaining 158 207 

cases (Figure 5, Supplementary Table 9). CN signature exposure was significantly predictive of 208 

survival (Training: P=0.002, log-rank test; stratified by age and cohort; Test: P=0.05,  C-209 

index=0.56, 95% CI:0.50-0.62; Entire cohort: P=0.002, log-rank test; stratified by age and cohort). 210 

Across the entire cohort, poor outcome was significantly predicted by CN signature 1 (P=0.0008) 211 

and CN signature 2 exposures (P=0.03), whilst good outcome was significantly predicted by 212 

exposures to CN signatures 3 (P=0.05) and 7 (P=0.006). 213 

Unsupervised hierarchical clustering of samples by signature exposures identified three clusters 214 

(Figure 5). Despite showing significant survival differences (P=0.004, log-rank test; stratified by 215 

age and cohort), these clusters did not provide any prognostic information in addition to that 216 

identified from the Cox proportional hazards model; cluster 2 was dominated by patients with high 217 

signature 1 exposures (poor prognosis), cluster 3 showed high signature 3 exposures (good 218 

prognosis) and cluster 1 had mixed signature exposures (Supplementary Figure 10).   219 

Copy-number signatures indicate relapse following chemotherapy 220 

Using a generalised linear model, we investigated whether copy-number signatures could be used 221 

to predict outcome following chemotherapy across 36 patients from the BriTROC-1 study with 222 

paired diagnostic and relapse samples16. The model showed CN signature 1 exposures at the time 223 

of diagnosis to be significantly predictive of platinum-resistant relapse (P=0.02, z-test, 224 

Supplementary Table 10).  225 
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Using the same 36 sample pairs, we also investigated whether chemotherapy treatment changed 226 

CN signature exposures. No significant effects on exposures were observed following 227 

chemotherapy treatment using a linear model that accounted for signature exposure at time of 228 

diagnosis, number of lines of chemotherapy and patient age (P>0.05, F-test, Supplementary Table 229 

10). The only variable showing a significant association with exposure at relapse was signature 230 

exposure at diagnosis (P<0.01, F-test, Supplementary Table 11).    231 
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Discussion 232 

Copy-number signatures provide a framework that is able to rederive the major defining elements 233 

of HGSOC genomes, including defective HR8, amplification of cyclin E9 and amplification-234 

associated fold-back inversions13. In addition, the CN signatures show significant associations with 235 

known driver gene mutations in HGSOC and provide the ability to detect novel associations with 236 

gene mutations. We derived signatures using inexpensive shallow whole genome sequencing of 237 

DNA from core biopsies. These approaches are rapid and cost effective, thus providing a clear 238 

path to clinical implementation. Copy-number signatures open new avenues for clinical trial design 239 

by highlighting contributions from underlying mutational processes that depend on oncogenic RAS 240 

and PI3K/AKT signaling. 241 

We found that almost all patients with HGSOC demonstrated a mixture of signatures indicative of 242 

combinations of mutational processes. These results suggest that early TP53 mutation, the 243 

ubiquitous initiating event in HGSOC, may permit multiple mutational processes to co-evolve, 244 

potentially simultaneously. Although further work is needed to define the precise timing of 245 

signature exposures, early driver events such as BRCA2 mutation still permit a diverse and 246 

variable number of CN signatures in addition to an HRD signature (Figure 4). These additional 247 

signature exposures may alter the risk of developing therapeutic resistance, particularly when only 248 

a single mutational process such as HRD is targeted. 249 

High exposure to CN signature 3, characterised by BRCA1/2-related HRD, is associated with 250 

improved overall survival, confirming prior data showing that BRCA1/2 mutation is associated with 251 

long survival in HGSOC33,34. Conversely, high exposure to signature 1, which is characterised by 252 

oncogenic RAS signaling (including NF1, KRAS and NRAS mutation), predicts subsequent 253 

platinum-resistant relapse and poor survival. This suggests that powerful intrinsic resistance 254 

mechanisms are present at the time of diagnosis and can be readily identified using CN signature 255 

analysis. This hypothesis is supported by the presence of exposure to CN signature 1 in germline 256 

BRCA2-mutated cases (Figure 4) as well as our previous work demonstrating the expansion of a 257 

resistant subclonal NF1-deleted population following chemotherapy treatment in HGSOC35 and 258 

poor outcomes in Nf1-deleted murine models of HGSOC36. Our CN signature analysis of BRCA2-259 

mutated cases also concurs with PCAWG/ICGC data showing that over half (9/16) of NF1-mutated 260 

cases also harboured mutations in BRCA1 or BRCA212. These data suggest a complex interplay 261 

between RAS signaling and HRD. Thus, RAS signaling may be an important target, especially in 262 

first line treatment, to prevent emergence of platinum-resistant disease. 263 

We found that CN signature exposures were not significantly altered between diagnosis and 264 

disease relapse in 36 sample pairs with a median interval of 30.6 months16. This suggests that the 265 

underlying mutational processes in HGSOC are relatively stable and that genome-wide patterns of 266 

copy-number change mainly reflect historic alterations to the genome acquired during 267 
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tumorigenesis37. Relative invariant genomic changes were also observed in the ARIEL2 trial, 268 

where genome-wide loss-of-heterozygosity was used to predict HRD, and only 14.5% (17/117) 269 

cases changed LOH status between diagnosis and relapse7.  270 

Larger association studies will be required to further refine CN signature definitions and 271 

interpretation. The application of our approach to other tumour types is likely to extend the set of 272 

signatures beyond the robust core set identified here. Basal-like breast cancers, squamous cell 273 

and small cell lung carcinoma, which all have high rates of TP53 mutation and genomic instability2, 274 

are promising next targets. Although it is likely that the strong associations have identified the 275 

driver mutational processes for CN signatures 1 and 3, functional studies will be required to 276 

establish causal links for the remaining signatures. For example, CN signature 6 was significantly 277 

associated with multiple mutated pathways, and this association was primarily driven by 278 

amplification of target genes. As this signature represented focal amplification events, it is difficult 279 

to determine whether amplification of specific genes drives the underlying mutational process or 280 

the amplifications emerge as a consequence of strong selection of advantageous phenotypes. Our 281 

data does not provide timing information for exposures and there is the real possibility that one 282 

mutational process may well drive the emergence of other mutational processes. For example, the 283 

association between signature 6 and PI3K signalling is also shared with signature 4. 284 

Other limitations of this work are technical: we integrated data from three sources, using three 285 

different pre-processing pipelines, and the ploidy determined by different pipelines can have a 286 

significant effect on the derived signatures. For example, high-ploidy CN signature 4 was 287 

predominantly found in the sequenced samples that underwent careful manual curation to identify 288 

whole-genome duplication events. When extending to larger sample sets, a unified processing 289 

strategy with correct ploidy determination is likely to produce improved signature definitions.  290 

Efforts to identify discrete, clinically relevant subtypes of disease have been successful in many 291 

cancer types38-40. However, HGSOC lacks clinically-relevant patient stratification, which is reflected 292 

in continued poor survival. We show that HGSOC genomes are shaped by multiple mutational 293 

processes that preclude simple subtyping. Thus, our results suggest that HGSOC is a continuum 294 

of genomes. By dissecting the mutational forces shaping HGSOC genomes, our study paves the 295 

way to understanding extreme genomic complexity, as well as revealing the evolution of tumors as 296 

they relapse and acquire resistance to chemotherapy.   297 
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Figure Legends 332 

Figure 1 | Copy-number signature identification from shallow whole genome sequence data 333 

and validation in independent cohorts 334 

a. Step 1: Absolute copy-numbers are derived from sWGS data; Step 2: genome-wide distributions 335 

of six fundamental copy-number features are computed; Step 3: Gaussian or Poisson mixture 336 

models (depending on data type) are fitted to each distribution and the optimal number of 337 

components is determined (ranging from 3–10) ; Step 4: the data are represented as a matrix with 338 

36 mixture component counts per tumor. Step 5: Non-negative matrix factorization is applied to the 339 

components-by-tumor matrix to derive the tumor-by-signature matrix and the signature-by-340 

components matrix. 341 

b. Heat maps show component weights for copy number signatures in two independent cohorts of 342 

HGSOC samples profiled using WGS and SNP array. Correlation coefficients are provided in 343 

Supplementary Table 2. 344 

Figure 2 | Linking copy-number signatures with mutational processes 345 

a Component weights for copy number signature 1. Barplots (upper panel) are grouped by copy 346 

number feature and show weights for each of the 36 components. The middle panel shows the 347 

mixture models of each distribution with components defining CN signature 1 highlighted in color. 348 

Lower panel shows genome-wide distribution (density) of each copy number feature, across the 349 

BriTROC-1 cohort, weighted by signature exposure. (Note: similar plots for other CN signatures 350 

are shown in Figure 3 and Supplementary Figure 5). 351 

b Associations between CN signature exposures and other features. Purple indicates positive 352 

correlation and orange negative correlation (see also Supplementary Figure 6). Numbers at the 353 

right of the panel indicate cases included in each analysis. Only significant correlations are shown 354 

(P<0.05). 355 

c Associations between CN signature exposures and SNV signatures. Purple indicates positive 356 

correlation and orange negative correlation (see also Supplementary Figure 6). The number at the 357 

right of the panel indicates cases included in the analysis. 358 

d and e Difference in CN signature exposures between cases with mutations in specific genes (d) 359 

and mutated/wildtype reactome pathways (e). The absolute difference in mean signature 360 

exposures was calculated for cases with and without mutations. Colors in filled circles indicate 361 

extent of difference. Only differences with FDR P<0.05 (Mann-Whitney test) are shown (see also 362 

Supplementary Figure 7).  363 

Numbers at the right of the panel indicate cases with mutations (SNVs, amplifications or deletions) 364 

in each gene/pathway. 365 
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Figure 3 | The seven copy-number signatures in HGSOC  366 

Description of the defining component weights, key associations and proposed mechanisms for the 367 

seven copy number signatures.  368 

*only the top three mutated genes for each of the pathways associated with CN signatures 4, 6 369 

and 7 are shown (the list of all significant genes is provided in Supplementary Tables 7 and 8). 370 

Figure 4 | CN signature exposures of four BriTROC-1 patients with germline BRCA2 371 

mutations and somatic loss of heterozygosity 372 

Stacked bar plots show copy-number signature exposures for four BriTROC-1 cases with 373 

pathogenic germline BRCA2 mutations and confirmed somatic loss of heterozygosity (LOH) at the 374 

BRCA2 locus. 375 

Figure 5 | Association of survival with copy-number signatures 376 

Upper panel: Stacked barplots show CN signature exposures for each patient. Patients were 377 

ranked by risk of death estimated by a multivariate Cox proportional hazards model stratified by 378 

age and cohort, with CN signature exposures as covariates.  379 

Middle panel: Colored matrix indicates group for each patient assigned by unsupervised clustering 380 

of CN signature 1, 2, 3 and 7 exposures (see also Supplementary Figure 10).  381 

Lower panel: Linear fit of signature exposures ordered by risk predicted by the Cox proportional 382 

hazards model. 383 

 384 

 385 

  386 

 387 
  388 



 

14 

References 389 

1. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat 390 
Genet 45, 1127-33 (2013). 391 

2. Hoadley, K.A. et al. Multiplatform analysis of 12 cancer types reveals molecular 392 
classification within and across tissues of origin. Cell 158, 929-44 (2014). 393 

3. Ahmed, A.A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma 394 
of the ovary. J Pathol 221, 49-56 (2010). 395 

4. Vaughan, S. et al. Rethinking ovarian cancer: recommendations for improving outcomes. 396 
Nat. Rev. Cancer 11, 719-725 (2011). 397 

5. Fong, P.C. et al. Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in 398 
BRCA Carrier Ovarian Cancer Correlating With Platinum-Free Interval. J. Clin. Oncol. 28, 399 
2512-2519 (2010). 400 

6. Gelmon, K.A. et al. Olaparib in patients with recurrent high-grade serous or poorly 401 
differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, 402 
open-label, non-randomised study. Lancet Oncol. 12, 852-861 (2011). 403 

7. Swisher, E.M. et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian 404 
carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet 405 
Oncol 18, 75-87 (2017). 406 

8. TCGA. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615 (2011). 407 
9. Etemadmoghadam, D. et al. Integrated genome-wide DNA copy number and expression 408 

analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. 409 
Clin. Cancer Res. 15, 1417-1427 (2009). 410 

10. Verhaak, R.G. et al. Prognostically relevant gene signatures of high-grade serous ovarian 411 
carcinoma. J Clin Invest 123, 517-25 (2013). 412 

11. Chen, G.M. et al. Consensus on Molecular Subtypes of Ovarian Cancer. bioRxiv (2017). 413 
12. Patch, A.-M. et al. Whole–genome characterization of chemoresistant ovarian cancer. 414 

Nature 521, 489-494 (2015). 415 
13. Wang, Y.K. et al. Genomic consequences of aberrant DNA repair mechanisms stratify 416 

ovarian cancer histotypes. Nat Genet 49, 856-865 (2017). 417 
14. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 418 

415-21 (2013). 419 
15. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 420 

sequences. Nature 534, 47-54 (2016). 421 
16. Goranova, T. et al. Safety and utility of image-guided research biopsies in relapsed high-422 

grade serous ovarian carcinoma-experience of the BriTROC consortium. Br J Cancer 116, 423 
1294-1301 (2017). 424 

17. Campbell, P.J. et al. Pan-cancer analysis of whole genomes. in bioRxiv (2017). 425 
18. Murnane, J.P. Telomere dysfunction and chromosome instability. Mutat Res 730, 28-36 426 

(2012). 427 
19. Korbel, J.O. & Campbell, P.J. Criteria for inference of chromothripsis in cancer genomes. 428 

Cell 152, 1226-36 (2013). 429 
20. Ng, C.K. et al. The role of tandem duplicator phenotype in tumour evolution in high-grade 430 

serous ovarian cancer. J Pathol 226, 703-12 (2012). 431 
21. Menghi, F. et al. The tandem duplicator phenotype as a distinct genomic configuration in 432 

cancer. Proc Natl Acad Sci U S A 113, E2373-82 (2016). 433 
22. Lee, M. et al. Comparative analysis of whole genome sequencing-based telomere length 434 

measurement techniques. Methods 114, 4-15 (2017). 435 
23. Zakov, S., Kinsella, M. & Bafna, V. An algorithmic approach for breakage-fusion-bridge 436 

detection in tumor genomes. Proc Natl Acad Sci U S A 110, 5546-51 (2013). 437 
24. Knauf, J.A. et al. Oncogenic RAS induces accelerated transition through G2/M and 438 

promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem 439 
281, 3800-9 (2006). 440 

25. Saavedra, H.I., Fukasawa, K., Conn, C.W. & Stambrook, P.J. MAPK mediates RAS-441 
induced chromosome instability. J Biol Chem 274, 38083-90 (1999). 442 



 

15 

26. Popova, T. et al. Ovarian Cancers Harboring Inactivating Mutations in CDK12 Display a 443 
Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications. Cancer 444 
Res 76, 1882-91 (2016). 445 

27. Zack, T.I. et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 45, 446 
1134-40 (2013). 447 

28. Berenjeno, I.M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance 448 
to genome doubling. Nat Commun 8, 1773 (2017). 449 

29. Govind, S.K. et al. ShatterProof: operational detection and quantification of chromothripsis. 450 
BMC Bioinformatics 15, 78 (2014). 451 

30. Malhotra, A. et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex 452 
rearrangements spawned by homology-independent mechanisms. Genome Res 23, 762-453 
76 (2013). 454 

31. Bakhoum, S.F. et al. Chromosomal instability drives metastasis through a cytosolic DNA 455 
response. Nature 553, 467-472 (2018). 456 

32. Etemadmoghadam, D. et al. Synthetic lethality between CCNE1 amplification and loss of 457 
BRCA1. Proc Natl Acad Sci U S A 110, 19489-94 (2013). 458 

33. Candido Dos Reis, F.J. et al. Germline mutation in BRCA1 or BRCA2 and ten-year survival 459 
for women diagnosed with epithelial ovarian cancer. Clin Cancer Res 21, 652-7 (2015). 460 

34. Norquist, B.M. et al. Mutations in Homologous Recombination Genes and Outcomes in 461 
Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group 462 
Study. Clin Cancer Res 24, 777-783 (2018). 463 

35. Schwarz, R.F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian 464 
cancer: a phylogenetic analysis. PLoS Med 12, e1001789 (2015). 465 

36. Walton, J.B. et al. CRISPR/Cas9-derived models of ovarian high grade serous carcinoma 466 
targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports 467 
7, 16827 (2017). 468 

37. Gerstung, M. et al. The evolutionary history of 2,658 cancers. bioRxiv (2017). 469 
38. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours 470 

reveals novel subgroups. Nature 486, 346-52 (2012). 471 
39. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 472 

497, 67-73 (2013). 473 
40. Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define etiologically 474 

distinct subgroups with therapeutic relevance. Nat Genet 48, 1131-41 (2016). 475 
 476 



1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

Chromosomes

A
bs

ol
ut

e 
co

py
-n

um
be

r

1 2 3 4 5 6 7

0 4 8

7

6

5

4

3

2

1

Copy-number
3

4
3

2
1
2
3
4
5
6

Breakpoint count
per chr arm

0.1
0

0.8
1
2
3
4
5
6

Breakpoint count
per 10MB

0 2 1

1
2
3
4
5
6

Copy-number 
changepoint

1
2
3
4
5
6

1
1

2

0
Length of chains 
of oscilating 
copy-number

0

1
2
3
4
5
6

1
0
1

0 10 30

4 16 32

4 12 22

0 4 8

0 4 8

5
3

2 Segment size
1

1
2
3
4
5
6

1e+08

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

78
59
27
80
50
88
39
34
79
90
82

14
68
75
24
87
32
12
52
25
21
73
42
49
35
20
69
40
6
29
58
38

91
33
76
18
26
37

86
30
5
9
31
8
23
22
65
13
10
11
70
4

17
45
89
41

66
36

72
61
16
47
81

1
84
2

15
57

64

60
44
53
55
67
83
56
54
74
3
43
62
85
63

71
28
77
48
51
46

19
7

0

100

200

300

400

500

78
59
27
80
50
88
39
34

79
90
82
14
68
75
24
87
32
12
52
25
21
73
42
49
35
20
69
40
6
29
58
38
91
33
76
18
26
37
86

30
5
9
31
8
23

22
65
13

10
11
70
4
17
45
89
41
66
36
72
61
16
47
81
1
84
2
15
57
64
60
44
53
55
67
83
56
54
74
3
43
62
85
63
71
28
77
48
51
46
19
7

0

100

200

300

400

500

4 12 22

4 16 32

0 4 8

0 10 30

1e+08

Derive CN feature distributions Fit optimal number of mixture 
model components

Tumor by signature matrix

Compile sum-of-posteriors matrix

Compute absolute CN from shallow WGS

Perform non-negative matrix factorisation 

Signature by component matrix

+

serutangi s 
N

C

) 63=
N( st nenop

mo
C

CN signaturesTumors (N=117)

Tu
m

or
s 

(N
=1

17
)

Components (N=36)

Tumor by component matrix

0.8

0.6

0.4

0.2

0.0

N=3

N=8

N=7

N=5

N=3

N=10

a

b

BriTROC sWGS (N=117)

CN signatures

PCAWG-OV WGS (N=112) TCGA SNP array (N=415)

0.8

0.6

0.4

0.2

0.0

Breakpoint count 
per 10MB (N=3)

Copy number 
(N=8)

Copy number 
changepoint 

(N=7)

Breakpoint count 
per chromosome 

arm (N=5)
Oscilating CN 
length (N=3)

Segment size
(N=10)



Tandem duplicator phenotype score
Number of chromothriptic-like events

Telomere length
Amplification associated fold-back inversions

Age at diagnosis

SNV signature 16
APOBEC SNV signature 13

SNV signature 5
HRD SNV signature 3

Age-associated SNV signature 1

BRCA1
BRCA2
CCNE1
CDK12

MYC
NF1

PTEN

Cellular Senescence
Cyclin D events in G1

Cyclin E events in G1/S
Homologous recombination

Interleukin signaling
PI3K/AKT signaling

RAS signaling
Toll-Like receptors cascades

Wnt signaling

1 2 3 4 5 6 7

e

0 4 8

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

1e+08

Underlying 
distributions

Correlations with other features 
Pearson 
correlation 
coefficient

Difference 
in means of 
exposure

Correlations with SNV signatures 

Mutated pathways

527

67
44

111

373/479
48/479

352/479
27/479

290/479

N

CN signatures

 1.0

 0.5

 0.0

-0.5

-1.0

 0.4

 0.3

 0.2

 0.1

 0.0

b

c 

d

Weight

a 

Breakpoint
count per 

10 MB

Breakpoint 
count per 
chr arm

Segment sizeOscilating
CN length

Copy
number

changepoint

Components

4 16 32 4 12 22 0 10 30 0 4 8

3
4

5
6

7

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

de
ns

ity

10*5*

10*

0 0 1* 2* 3*
x107 x107

372/479
226/479
346/479

153

33/479

61

Mutated genes

Copy
number

11/479
10/479

122/479

45/479
23/479

108/479
16/479



0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

0.00

0.25

0.50

0.75

1.00

1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910

CN signature component weights  
Important 

components Key associations Proposed 
mechanism

Features Breakpoint count per 10MB

Copy number

Copy number changepoint

Breakpoint count per chr arm

Length of chains of oscillating copy number

Segment size

A. Low number of
    breakpoints 
    (<1break/10Mb)
B. 0 or 2 breakpoints
    per chromosome arm
C. Large segment sizes 
    (>30Mb) 

Oncogenic 
RAS/MAPK 
signaling and 
telomere 
shortening 
leading to 
breakage-fu-
sion-bridge 
events

• Poor overall survival
• Higher in cases with mutated NF1 and
  RAS signaling pathway: 
  NF1, KRAS, RASA1, RASA2, CUL3, NRAS 
• Correlated with
  amplification associated fold-back
  inversions 
• Anti-correlated with
  telomere length; tandem-duplicator 
  phenotype score; HRD SNV signature 3

A. High number of 
    breakpoints (~4/10Mb)
B. Single copy-number 
    changes resulting in 
    3 copies
C. Long chains of oscillating 
    copy-number
D. Small segment 
    size (mostly 0.4-4.3Mb)

• Poor overall survival
• Correlated with
  tandem duplicator score; SNV signature 5
• Higher in cases with CDK12 mutation

A. Copy-number 
    changes from diploid to
    single copy
B. Breaks distributed evenly 
    across genome

• Good overall survival
• Higher in cases with mutation in BRCA1, 
  BRCA2, PTEN and the homologous
  recombination pathway:
  BARD1, PALB2, BRCA1, ATR, BLM, ATM, NBN, 
  MRE11, BRCA2
• Correlated with
  HRD SNV signature 3
• Anti-correlated with
  age at diagnosis; age-related SNV 
  signature 1

BRCA1/2
related
homologous 
recombination
deficiency

A. High segment 
    copy-number 
    (4-8 copies)
B. Copy-number changes 
    of 2-3 copies

• Higher in cases with mutated MYC,
  CDK12, CCNE1 and mutations in the 
  PI3K/AKT signaling, TLR cascade and 
  interleukin signaling pathways*: 
  AKT2, RICTOR, MET, JUN, MAP2K4, PPP2R1A,
  MYC, SOX2, JAK2 
• Correlated with 
  telomere length 

A. Subclonal copy-number
    changes (~0.5 copies)

A. Large copy-number 
    changes (6-28) resulting 
    in high copy-number 
    states (8-30 copies)
B. Short segments 
    interspersed with long 
    segments

• Higher in cases with mutated CCNE1, 
  and mutations in the TLR cascade, 
  PI3K/AKT signaling, CCNE1- and CCND1-
  associated events and cellular senescence
  pathways*: 
  AKT2, RICTOR, MET, JUN, MAP2K4, PPP2R1A,
  MYC, CCNE1, CCND2, CCND3, CDK6, MDM4
• Correlated with 
  age at diagnosis; age-related SNV 
  signature 1; APOBEC SNV signature 13 
• Anti-correlated with
  tandem duplicator score; HRD-associated 
  SNV signature 3

A. Copy-number 
    changes from tetraploid to
    3 copies
B. Breaks distributed evenly 
    across genome

• Good overall survival
• Higher in cases with mutated MYC and 
  mutations in the Wnt signaling and 
  interleukin signaling pathways*:
  MYC, SOX2, TERT, AKT2, JAK2 
• Correlated with HRD-associated 
  SNV signature 3

Signature 1

Signature 2 

Signature 3

Signature 4

Signature 5

Signature 6

Signature 7

• Correlated with
  number of chromothriptic-like events 
• Anti-correlated with
  SNV signature 16

Whole genome 
duplication due 
to failure of cell 
cycle control
and PI3K 
inactivation 

Focal 
amplification
due to failure 
of cell cycle 
control 

Subclonal
catastophic
chromothriptic-
like events
through
unknown
mechanisms

Tandem 
duplication
through 
CDK12 
inactivation

Non-BRCA1/2
related
homologous 
recombination
deficiency

A

C
B

A
B

C

D

A

B

A B

BA

A

A

B



0.00

0.25

0.50

0.75

1.00

BRCA2 germline mutation carriers + somatic LOH (n=4)

Ex
po

su
re

s

Signature

1

2

3

4

5

6

7



0.00

0.25

0.50

0.75

1.00

3
2
1

0.1

0.2

0.3

0.4

Risk of death

Tumors ordered by decreasing risk of death (n=575)

CN 
signature

1

2

3

4

5

6

7

Stacked signature exposures

Smoothed signature exposures

E
xp

os
ur

e
E

xp
os

ur
e

Unsupervised clustering


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

