34 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Reliability of 3D laser-based anthropometry and comparison with classical anthropometry

    Get PDF
    Anthropometric quantities are widely used in epidemiologic research as possible confounders, risk factors, or outcomes. 3D laser-based body scans (BS) allow evaluation of dozens of quantities in short time with minimal physical contact between observers and probands. The aim of this study was to compare BS with classical manual anthropometric (CA) assessments with respect to feasibility, reliability, and validity. We performed a study on 108 individuals with multiple measurements of BS and CA to estimate intra- and inter-rater reliabilities for both. We suggested BS equivalents of CA measurements and determined validity of BS considering CA the gold standard. Throughout the study, the overall concordance correlation coefficient (OCCC) was chosen as indicator of agreement. BS was slightly more time consuming but better accepted than CA. For CA, OCCCs for intra- and inter-rater reliability were greater than 0.8 for all nine quantities studied. For BS, 9 of 154 quantities showed reliabilities below 0.7. BS proxies for CA measurements showed good agreement (minimum OCCC > 0.77) after offset correction. Thigh length showed higher reliability in BS while upper arm length showed higher reliability in CA. Except for these issues, reliabilities of CA measurements and their BS equivalents were comparable
    corecore