66 research outputs found

    Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.</p> <p>Methods</p> <p>Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.</p> <p>Results</p> <p>Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.</p> <p>Conclusion</p> <p>FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth <it>in vitro </it>and <it>in vivo </it>and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.</p

    Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross

    Get PDF
    Individual variation in sensitivity to acute ethanol (EtOH) challenge is associated with alcohol drinking and is a predictor of alcohol abuse. Previous studies have shown that the C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mouse strains differ in responses on certain measures of acute EtOH intoxication. To gain insight into genetic factors contributing to these differences, we performed quantitative trait locus (QTL) analysis of measures of EtOH-induced ataxia (accelerating rotarod), hypothermia, and loss of righting reflex (LORR) duration in a B6 × S1 F2 population. We confirmed that S1 showed greater EtOH-induced hypothermia (specifically at a high dose) and longer LORR compared to B6. QTL analysis revealed several additive and interacting loci for various phenotypes, as well as examples of genotype interactions with sex. QTLs for different EtOH phenotypes were largely non-overlapping, suggesting separable genetic influences on these behaviors. The most compelling main-effect QTLs were for hypothermia on chromosome 16 and for LORR on chromosomes 4 and 6. Several QTLs overlapped with loci repeatedly linked to EtOH drinking in previous mouse studies. The architecture of the traits we examined was complex but clearly amenable to dissection in future studies. Using integrative genomics strategies, plausible functional and positional candidates may be found. Uncovering candidate genes associated with variation in these phenotypes in this population could ultimately shed light on genetic factors underlying sensitivity to EtOH intoxication and risk for alcoholism in humans

    Molecular Foundations of Reproductive Lethality in Arabidopsis thaliana

    Get PDF
    The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism

    RNA viruses in community-acquired childhood pneumonia in semi-urban Nepal; a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia is among the main causes of illness and death in children <5 years of age. There is a need to better describe the epidemiology of viral community-acquired pneumonia (CAP) in developing countries.</p> <p>Methods</p> <p>From July 2004 to June 2007, we examined nasopharyngeal aspirates (NPA) from 2,230 cases of pneumonia (World Health Organization criteria) in children 2 to 35 months old recruited in a randomized trial of zinc supplementation at a field clinic in Bhaktapur, Nepal. The specimens were examined for respiratory syncytial virus (RSV), influenza virus type A (InfA) and B (InfB), parainfluenza virus types 1, 2 and 3 (PIV1, PIV2, and PIV3), and human metapneumovirus (hMPV) using a multiplex reverse transcriptase polymerase chain reaction (PCR) assay.</p> <p>Results</p> <p>We identified 919 virus isolates in 887 (40.0%) of the 2,219 NPA specimens with a valid PCR result, of which 334 (15.1%) yielded RSV, 164 (7.4%) InfA, 129 (5.8%) PIV3, 98 (4.4%) PIV1, 93 (4.2%) hMPV, 84 (3.8%) InfB, and 17 (0.8%) PIV2. CAP occurred in an epidemic pattern with substantial temporal variation during the three years of study. The largest peaks of pneumonia occurrence coincided with peaks of RSV infection, which occurred in epidemics during the rainy season and in winter. The monthly number of RSV infections was positively correlated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.40, <it>P </it>= 0.01), but not with temperature or rainfall. An hMPV epidemic occurred during one of the three winter seasons and the monthly number of hMPV cases was also associated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.55, <it>P </it>= 0.0005).</p> <p>Conclusion</p> <p>Respiratory RNA viruses were detected from NPA in 40% of CAP cases in our study. The most commonly isolated viruses were RSV, InfA, and PIV3. RSV infections contributed substantially to the observed CAP epidemics. The occurrence of viral CAP in this community seemed to reflect more or less overlapping micro-epidemics with several respiratory viruses, highlighting the challenges of developing and implementing effective public health control measures.</p

    Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil

    Get PDF
    Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore