35 research outputs found
Signatures of mutational processes in human cancer.
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia
BCL2-inhibitor venetoclax is used to treat relapsed/refractory chronic lymphocytic leukemia (CLL). Here, the authors show the clonal dynamics towards venetoclax resistance by performing whole-exome sequencing of 8 CLL patients undergoing venetoclax treatment
Mechanisms of Primary Drug Resistance in FGFR1
Purpose: The 8p12-p11 locus is frequently amplified in squamous cell lung cancer (SQLC); the receptor tyrosine kinase fibroblast growth factor receptor 1 (FGFR1) being one of the most prominent targets of this amplification. Thus, small molecules inhibiting FGFRs have been employed to treat FGFR1-amplified SQLC. However, only about 11% of such FGFR1-amplified tumors respond to single-agent FGFR inhibition and several tumors exhibited insufficient tumor shrinkage, compatible with the existence of drug-resistant tumor cells.Experimental Design: To investigate possible mechanisms of resistance to FGFR inhibition, we studied the lung cancer cell lines DMS114 and H1581. Both cell lines are highly sensitive to three different FGFR inhibitors, but exhibit sustained residual cellular viability under treatment, indicating a subpopulation of existing drug-resistant cells. We isolated these subpopulations by treating the cells with constant high doses of FGFR inhibitors.Results: The FGFR inhibitor-resistant cells were cross-resistant and characterized by sustained MAPK pathway activation. In drug-resistant H1581 cells, we identified NRAS amplification and DUSP6 deletion, leading to MAPK pathway reactivation. Furthermore, we detected subclonal NRAS amplifications in 3 of 20 (15%) primary human FGFR1-amplified SQLC specimens. In contrast, drug-resistant DMS114 cells exhibited transcriptional upregulation of MET that drove MAPK pathway reactivation. As a consequence, we demonstrate that rational combination therapies resensitize resistant cells to treatment with FGFR inhibitors.Conclusions: We provide evidence for the existence of diverse mechanisms of primary drug resistance in FGFR1-amplified lung cancer and provide a rational strategy to improve FGFR inhibitor therapies by combination treatment. Clin Cancer Res; 23(18); 5527-36. ©2017 AACR