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Driver mutations of cancer epigenomes
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ABSTRACT

Epigenetic alterations are associated with all aspects of
cancer, from tumor initiation to cancer progression and
metastasis. It is now well understood that both losses
and gains of DNA methylation as well as altered chro-
matin organization contribute significantly to cancer-
associated phenotypes. More recently, new sequencing
technologies have allowed the identification of driver
mutations in epigenetic regulators, providing a mecha-
nistic link between the cancer epigenome and genetic
alterations. Oncogenic activating mutations are now
known to occur in a number of epigenetic modifiers (i.e.
IDH1/2, EZH2, DNMT3A), pinpointing epigenetic path-
ways that are involved in tumorigenesis. Similarly,
investigations into the role of inactivating mutations in
chromatin modifiers (i.e. KDM6A, CREBBP/EP300,
SMARCB1) implicate many of these genes as tumor
suppressors. Intriguingly, a number of neoplasms are
defined by a plethora of mutations in epigenetic regu-
lators, including renal, bladder, and adenoid cystic car-
cinomas. Particularly striking is the discovery of
frequent histone H3.3 mutations in pediatric glioma, a
particularly aggressive neoplasm that has long
remained poorly understood. Cancer epigenetics is a
relatively new, promising frontier with much potential for
improving cancer outcomes. Already, therapies such as
5-azacytidine and decitabine have proven that targeting
epigenetic alterations in cancer can lead to tangible
benefits. Understanding how genetic alterations give
rise to the cancer epigenome will offer new possibilities
for developing better prognostic and therapeutic
strategies.
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INTRODUCTION

Cancer is an evolutionary process through which dysregu-
lation in select cellular mechanisms confers a clonal
advantage, leading to tumor growth and eventually, metas-
tasis. In fact, nearly all cancers are defined by several
“hallmark” capabilities, including resisting cell death, evading
growth suppressors, uncontrolled proliferation, neoangio-
genesis, invasion/metastasis, and replicative immortality
(Hanahan and Weinberg, 2011). Aberrant control of other
processes, such as defective differentiation and DNA dam-
age repair, is also linked to tumor formation. Research efforts
have traditionally focused on genetic abnormalities underly-
ing malignant transformation, due to initial technological
constraints and our limited understanding of other heritable
patterns of gene regulation. Early studies on these genetic
alterations—copy number variations, mutations, gene rear-
rangements—have defined mechanisms of oncogenesis, led
to the creation of targeted therapies, and improved patient
outcomes for certain cancers. Only recently has it become
evident that many genetic alterations in cancer target epi-
genetic regulators, causing cancer-associated phenotypes
via epigenetic dysfunction.

Since the first discovery of cancer-associated loss of DNA
methylation, the field of cancer epigenetics has grown
remarkably and helped elucidate aspects of cancer biology
where genetic explanations alone are insufficient (Feinberg
and Vogelstein, 1983). Epigenetics is the process by which
cells encode non-genetic, heritable information through
alterations that do not change the DNA sequence. Generally,
chromatin exists in two main forms—condensed, transcrip-
tional silent heterochromatin and euchromatin, which is
transcriptionally active. The functional unit of chromatin is
the nucleosome, which is an octameric structure composed
of two histones each of H2A, H2B, H3, and H4 encircled by
147 bp of DNA (Margueron and Reinberg, 2010). Regulation
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of the chromatin state is achieved through DNA methylation,
chromatin remodeling, and/or covalent histone modifica-
tions, such as methylation, acetylation, phosphorylation,
ubiquitination, and sumoylation. The major effectors of these
modifications are the chromatin modifier enzymes, highly
specific proteins that catalyze the addition or removal of
functional groups to DNA or histone tails. These modifica-
tions alter chromatin structure through noncovalent interac-
tions within and between nucleosomes, leading to changes
in macromolecular organization and promoter accessibility.
In addition, these chromatin “marks” serve as signals to
other specialized proteins involved in chromatin organiza-
tion, gene transcription, genome maintenance, and replica-
tion (Kouzarides, 2007; Sharma et al., 2010). As a result,
aberrations in one or more of these modifiers can have
profound effects on normal cell physiology and are now well-
documented in many diseases, including cancer (Fig. 1).

It has been known for decades that epigenetic dysregu-
lation occurs in cancer. Aberrant DNA hyper- and hypo-
methylation was one of the first molecular features noted to
be present in cancer cells (Feinberg and Vogelstein, 1983;
Gama-Sosa et al., 1983; Rubery and Newton, 1973; Timp
and Feinberg, 2013). However, the nature of epigenetic

alterations and the molecular underpinnings of these chan-
ges are just beginning to be appreciated. The recent accel-
erated search for mutations in cancers, facilitated through
next generation sequencing technologies, has greatly
accelerated our understanding of the mechanisms underly-
ing epigenetic dysfunction in cancers.

Genome-wide and exomic sequencing data from recent
years have demonstrated that mutations in epigenetic
modifiers comprise a large portion of all genetic events in
many cancers, including tumors such as renal carcinoma,
adenoid cystic carcinoma (ACC), and transitional cell carci-
noma (TCC) of the bladder (Dalgliesh et al., 2010; Gui et al.,
2011; Ho et al., 2013). In fact, the main objective of these
recent genomic analyses is the identification of bona fide
“driver” mutations in cancer genes. These mutations are
defined by their ability to promote or “drive” tumorigenesis
and are therefore positively selected for in the development
of cancer. In contrast, “passenger” mutations, which com-
prise the majority of mutations identified, represent genetic
events that have no direct or indirect effect on the selective
growth advantage of the cell in which it occurred (Stratton
et al., 2009; Vogelstein et al., 2013). Candidate epigenetic
driver genes have been identified as either mutated across
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Figure 1. Epigenetic regulation of gene expression. Epigenetic processes include DNA methylation, covalent histone

modifications (e.g. methylation, acetylation), and chromatin remodeling (SWI/SNF complex). Modifier proteins with frequent driver

mutations in cancer are shown by specific function and target site. Green and red font colors represent histone “writers” and “erasers,”

respectively. Lightning bolts represent cancer-associated mutations in histones H3.1 (K27) and H3.3 (K27, G34).
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many cancers (e.g. KDM6A in over 12 cancers), having
highly recurrent mutations (e.g. IDH1 R132), or having highly
prevalent mutations in select tumor histologies (e.g. MLL2 in
follicular lymphoma) (You and Jones, 2012). The charac-
terization of these driver gene mutations has enhanced our
understanding of the mechanisms contributing to oncogen-
esis, allowed for improved prognostic assessment, and
opened the door for the development of exciting new ther-
apies. In this review, we highlight recent developments, new
discoveries, and therapeutic advances involving cancer-
associated mutations in epigenetic regulators.

DNA METHYLATION AND HYDROXYMETHYLATION

DNA methylation plays a well-defined role in both develop-
ment and disease, including cancer. First identified in 1975,
CpG island (CGI) methylation was shown to function as a
relatively stable alteration on DNA that can serve to silence
gene transcription (Holliday and Pugh, 1975; Riggs, 1975).
We now understand that DNA methylation is much more
dynamic and complex, with diverse epigenetic conse-
quences linked to varied genomic locations of where this
mark occurs. For example, DNA methylation at gene pro-
moter CGIs potently blocks the initiation of transcription,
whereas methylation within CpG-poor gene bodies may
actually facilitate elongation and influence patterns of alter-
nate splicing. In addition, DNA methylation is frequently
found in repeat-rich areas of the genome and is vital for both
chromosomal and genomic stability, possibly through the
repression of retroviral transposons (Jones, 2012). Still, the
role for this epigenetic mark at other regulatory regions, such
as enhancers and insulators, has yet to be determined.
Regardless, aberrant methylation in human cancer is a
defining feature, with global promoter CGI hypermethylation
and non-CGI hypomethylation widely reported (Ehrlich,
2002; Sharma et al., 2010). Furthermore, local variations in
methylation at only several key loci have been shown to be
sufficient for tumorigenesis (Lee et al., 2008; Poage et al.,
2011). Importantly, these altered patterns of DNA epigenetic
marks (e.g. 5-mC, 5-hmC) are frequently accompanied by a
critical imbalance in transcriptional programs involving dif-
ferentiation and stem cell maintenance, thereby initiating
tumorigenesis and sustaining growth (Jones and Baylin,
2007).

DNA methylation can function to silence tumor suppres-
sor genes along with genetic mutations (Herman and Baylin,
2003). For example, in the case of hereditary gastric cancer,
methylation of CDH1 (which encodes the E-cadherin tumor
suppressor) can function as a “second hit” and cause gastric
cancer when the first allele is mutated (Grady et al., 2000). In
sporadic cancers, tumor suppressor genes that are mutated
in hereditary versions of the disease are frequently silenced
by DNA methylation instead (Esteller et al., 2001). For
example, in hereditary nonpolyposis colon cancer (HNPCC),
MLH1 inactivation via mutation can lead to microsatellite

instability (MSI) and tumorigenesis, whereas in sporadic
colon cancers, MLH1 is frequently silenced by methylation
(Kane et al., 1997; Veigl et al., 1998). These data and others
indicate that aberrant DNA methylation can work along with
genetic alterations to promote tumorigenesis.

DNMT3A

DNA methylation is carried out by the mammalian DNA
methyltransferases (DNMTs), essential enzymes that cata-
lyze the addition of a methyl group to cytosine in CpG
dinucleotides in DNA (Jones, 2012). The conversion of
5-cytosine (5-C) to methyl-cytosine (5-mC) requires the
presence of a methyl donor, S-adenosylmethionine (SAM),
and one of the following catalytically active DNMTs: DNMT1,
DNMT3A, or DNMT3B (Shen et al., 1992). Although there is
some evidence for overlapping roles, DNMT3A and
DNMT3B are essential for de novo DNA methylation,
whereas DNMT1 “maintains” heritable methylation patterns
across the genome during cell replication (Hsieh, 1999). In
fact, the role of DNMT3A in de novo methylation was initially
characterized in the context of epigenetic silencing during
development, including at imprinted loci in germ cells (Kan-
eda et al., 2004; Okano et al., 1999). The DNMTs have long
been suspected to play a role in oncogenesis, as well.
Aberrations in DNA methylation—both hyper- and hypo-
methylation—have been well-documented in patient tumors
and cell lines for decades (El-Osta, 2004). Additionally, Oka
and colleagues first showed that in some cases, DNMT3A
and DNMT3B, not DNMT1, mediate the cytotoxic effects of
5-aza-dC, a therapeutic mainstay in the treatment of several
hematopoietic malignancies (Oka et al., 2005; Plimack et al.,
2007). Not long after, DNMT3A and DNMT3B were further
implicated in both hematopoietic stem cell (HSC) renewal
and differentiation, two tightly regulated processes whose
perturbation can lead to carcinogenesis (Challen et al., 2012;
Tadokoro et al., 2007).

DNMT3A somatic mutations were first discovered by
Yamashita and colleagues following sequencing of tissue
from adult patients with de novo acute myeloid leukemia
(AML) (Yamashita et al., 2010). Soon after, DNMT3A muta-
tions were reported in AML cohorts from others, with fre-
quencies as high as 22.1% (Ley et al., 2010). The majority of
mutations occur at R882 (60%–64%), and almost all are
heterozygous (Ley et al., 2010; Thol et al., 2011a). DNMT3A
mutations are enriched in AML patients with intermediate-
risk cytogenetics and normal karyotype (Lin et al., 2011;
Patel et al., 2012). They are also associated with increased
age, M4 and M5 AML subtypes, worse overall survival (OS)
and relapse-free survival (RFS), and increased blasts at
diagnosis (Hou et al., 2012; Ley et al., 2010; Lin et al., 2011;
Marcucci et al., 2012; Thol et al., 2011a; Yan et al., 2011).
There is also evidence that DNTM3A mutations may be a
prognostic marker for decreased time to treatment failure
(TTF), duration of complete remission (CR), and disease-
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free survival (DFS), at least in cytogenetically normal AML
(Marcucci et al., 2012; Thol et al., 2011a; Yan et al., 2011).
These studies have also identified several frequently co-
occurring mutations, which include NPM1, FLT3, IDH1/2,
and less commonly, TET2 (Hou et al., 2012; Ley et al., 2010;
Lin et al., 2011; Marcucci et al., 2012; Renneville et al., 2012;
Thol et al., 2011a; Yan et al., 2011). As alterations in epi-
genetic regulators frequently lead to genomic instability,
DNMT3A mutation may further drive progression of the dis-
ease itself (Wakita et al., 2013). Further, recent experimental
work has demonstrated that DNMT3A mutations at R882 are
only found in major clones, suggesting this genetic alteration
may be an initiating lesion in AML (Bisling et al., 2013).

DNMT3A mutations have also been described, albeit at
lower frequency, in other myeloid malignancies, such as
myelodysplastic syndromes (MDS; 3%–8%) and myelopro-
liferative neoplasms (MPNs; 2%–10%), as well as early
T-cell precursor acute lymphoblastic leukemia (ETP-ALL;
16%–18%) (Brecqueville et al., 2011; Ewalt et al., 2011;
Grossmann et al., 2013; Neumann et al., 2013; Stegelmann
et al., 2011; Thol et al., 2011b; Traina et al., 2013; Walter
et al., 2011). Similar to what is observed in de novo AML,
R882 is most frequently targeted for mutation (60%) in these
neoplasms (Thol et al., 2011b). Clinically, DNMT3A muta-
tions also correlated with increased age and predicted
prognosis in all types, including worse OS, event-free sur-
vival (EFS), and AML-free survival (Lin et al., 2011; Neu-
mann et al., 2013; Renneville et al., 2012; Thol et al., 2011b;
Walter et al., 2011). Paradoxically, univariate and multivari-
ate analysis of 92 patients with MDS revealed DNMT3A
mutations were correlated with better overall response rate
(ORR) and progression-free survival (PFS) (Traina et al.,
2013). Interestingly, similar to AML, MPNs showed an
association between DNMT3A alterations and mutation in
JAK2, IDH1/2, and ASXL1 but not TET2 (Stegelmann et al.,
2011). However, studies in MDS and ETP-ALL have found
no association between DNMT3A mutations and other
known leukemogenic drivers, including FLT3 (Neumann
et al., 2013; Thol et al., 2011b).

DNMT3A is a 102 kDa protein with three highly conserved
functional domains: An N-terminal PWWP domain, a cys-
teine-rich PHD zinc finger domain, and a C-terminal catalytic
domain (Hermann et al., 2004). DNMT3A mutations in can-
cer have been reported in all three domains, with most
occurring in the catalytic domain, including the R882 muta-
tion (60%) (Ley et al., 2010). Still, many cancer-specific
mutations occur in non-catalytic domains. The PWWP
domain is essential in localizing DNMT3A to heterochromatic
regions of DNA during interphase, though it is unclear if this
is related to its reported ability to bind DNA directly (Bach-
man et al., 2001; Ge et al., 2004; Purdy et al., 2010; Suetake
et al., 2011). Alternatively, the PHD domain has also been
shown to mediate regional specificity and repression through
its interactions with transcriptional repressor RP58,
HP1beta, histone deacetylatases (HDACs), and SUV39H1

(Datta et al., 2003; Fuks et al., 2001; Fuks et al., 2003).
Exactly how these mutations disrupt protein function is of
great interest, although a single unifying mechanism is
unlikely to exist. Likewise, a recent clinical study found that
R882 mutations confer poor prognosis in older populations,
whereas non-R882 mutations confer poor prognosis in
younger patients (Marcucci et al., 2012).

Whether these reported mutations are loss-of-function,
gain-of-function, or act via a dominant-negative mechanism
has also been debated. A strong case can be made that
DNMT3A is an oncogene, as it is overexpressed in several
cancers, depletion results in decreased proliferation and
metastasis, and 5-aza-dC causes apoptosis through direct
inhibition of DNMT3A (Oka et al., 2005). In regards to
mutations themselves, the R882H DNMT3A mutant was
sufficient to promote tumorigenesis in an IL-3 dependent
transformation assay in leukemic 32D cells (Yan et al., 2011).
Alternatively, some studies have demonstrated that mutant
DNMT3A (R882H) has a markedly reduced catalytic ability
(∼50%) in methyltransferase assays and decreased DNA-
binding capacity in vitro, implying a possible loss-of-function
phenotype via a dominant-negative mechanism (Jia et al.,
2007; Ley et al., 2010; Yamashita et al., 2010). Clearly,
additional studies are necessary to understand the exact
nature by which these cancer-associated mutations are
transforming.

Characterizing larger DNMT3A-induced changes in the
cancer methylome has proven quite challenging. Ley and
colleagues showed no changes in genome-wide methylation
according to DNMT3A status in AML, and although 182
specific regions showed increased hypomethylation in
mutant samples, this did not correlate with gene expression
(Ley et al., 2010). However, in a more recent cohort, a total of
3878 genomic regions were found to have significantly dif-
ferent methylation patterns using MeDIP-chip and differ-
ences of expression levels in 889 of 20,723 annotated genes
was observed via an Affymetrix microarray (Yan et al., 2011).
Further, this group found during RT-PCR validation that the
expression of several HOX family genes significantly
increased in DNMT3A mutant samples compared to wild-
type.

Recent experiments may offer some insight behind the
conflicting methylation and functional data. Protein binding at
the DNMT3A tetramerization interface is important for
methylation patterning, inducing processive methylation of
clustered sites (Jia et al., 2007). Most mutations, including
R882, occur within this tetramer interface. Therefore, differ-
ences between oligomerization states can explain how
DNMT3A mutations alter epigenetic silencing and lead to
transformation, without global changes in DNA methylation
(Holz-Schietinger et al., 2011; Holz-Schietinger et al., 2012).
Although the commonly occurring R882H mutation does not
disrupt DNMT3A association with required cofactor DNMT3L
in vitro, the latter is only expressed in early development
(Chedin et al., 2002; Jia et al., 2007; Webster et al., 2005;
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Yamashita et al., 2010). However, other binding proteins,
such as thymine-DNA glycosylase and ecotropic viral inter-
gration site 1, can adhere to sites within the DNMT3A cat-
alytic domain and may explain altered mutant DNMT3A
activity (Li et al., 2007; Senyuk et al., 2011). In addition, non-
catalytic mutations may disrupt protein binding to other
domains, as described above. Although the exact mecha-
nism remains elusive, these mutations result in decreased
methylation processivity and altered localization, possibly to
euchromatic regions of DNA (Jurkowska et al., 2011). This
may help explain how DNMT3A mutations drive tumor for-
mation in hematopoietic malignancies, even in the absence
of larger global methylation changes.

TET2

The ten-eleven translocation (TET) family proteins were first
discovered in cancer with the fusion of TET1 to MLL in select
AML patients with t(10;11)(q22;q23) (Lorsbach et al., 2003).
Mechanistic studies then showed the TET proteins are
dioxygenases that depend on 2-oxoglutarate, oxygen, Fe(II),
and ascorbic acid to catalyze the conversion of 5-mC to
5-hydroxymethylcytosine (5-hmC) at CpG regions in DNA
(Blaschke et al., 2013; Ito et al., 2010; Minor et al., 2013;
Tahiliani et al., 2009; Yin et al., 2013). TET enzymes may be
responsible for DNA demethylation through both passive
and active means. For example, CpG dinucleotides that are
“marked” with 5-hmC are not recognized by DNMT1 and
therefore, methylation is passively lost at these sites through
repeated cycles of cell division (Valinluck and Sowers,
2007). Alternatively, active demethylation can proceed fol-
lowing placement of 5-hmC via the activation-induced cyti-
dine deaminase (AID)-APOBEC DNA repair pathway (Guo
et al., 2011). More recently, an even greater role for TET
enzymes in active demethylation was shown in vitro, with
TET enzymes proving sufficient for converting 5-mC to
5-hmC, 5-hmC to 5-formylcytosine (5-fC), and finally 5-fC to
5-carboxylcytosine (5-caC). 5-caC is then targeted by base
excision repair enzymes to complete the demethylation
process (He et al., 2011; Ito et al., 2011).

TET2 was first suspected to have a role in cancer when
six patients with either secondary AML (sAML) or MDS were
noted to have minimal deletions via FISH on chromosome
4q24 (Viguie et al., 2005). Soon after, the first TET2 somatic
mutations were identified in 25 patients (14%) with MPNs
(Delhommeau et al., 2008). Delhommeau and colleages
then sequenced TET2 in patient tumor samples, becoming
the first group to identify TET2 mutations in multiple myeloid
neoplasms, including MDS (19%), MPNs (12%–14%), and
sAML (24%). They concluded that TET2 was a novel bona
fide tumor suppressor, noting that the majority of mutations
are heterozygous (55%) and that TET2 defects precede the
well-known JAK2 V617F driver mutation in MPN HSCs
(Delhommeau et al., 2009). More recently, Schaub and col-
leagues disputed this result using colony formation assays to

show that TET2 mutations can either precede (4 of 8
patients), follow (2 of 8), or occur independently (2 of 8) of
JAK2 V617F mutations in MPN patient samples (Schaub
et al., 2010). Although the temporal relationship between
TET2 mutations and other leukemogenic drivers is still
unclear, the frequency and ubiquitous nature of these
mutations in cancer is quite revealing. In addition to MDS,
sAML, and MPNs, TET2 mutations have now been descri-
bed in other myeloid neoplasms, such as de novo AML
(12%) and chronic myelomonocytic leukemia (CMML; 42%–

46%) (Abdel-Wahab et al., 2009; Smith et al., 2010).
Unlike DNMT3A mutations, TET2 alterations seem to

hold limited prognostic utility in leukemia. The overwhelming
majority of studies published to date have found no change
in OS or any other prognostic tools between patients har-
boring TET2mutations and those who are not. However, one
study in a cohort of 96 MDS patients reported that TET2
mutations conferred an OS, EFS, and AML-free survival
advantage (Kosmider et al., 2009). Paradoxically, Abdel-
Wahab and colleagues found that TET2 mutations were
linked to worse OS in 93 patients with de novo AML, and a
recent whole-exome sequencing study reported worse EFS
in AML patients with TET2 mutation (Abdel-Wahab et al.,
2009; Weissmann et al., 2012). Further, Nibourel and col-
leagues reported no association with OS or DFS in their
cohort of de novo AML patients, though the prevalence of
TET2 mutations in patients who failed to achieve complete
remission (CR) trended higher (27% vs. 17%) (Nibourel
et al., 2010). Despite questionable association to patient
outcomes, TET2 mutations are linked with other clinical
features, including monocytosis, leukocytosis, and advanced
age at diagnosis (Jankowska et al., 2009; Smith et al., 2010;
Tefferi et al., 2009a; Tefferi et al., 2009c). Although TET2
mutations show little association to known myeloid leuke-
mogenic drivers—FLT3-ITD, RUNX1, CEBPA—they do
associate with NPM1 and ASXL1 mutations and infrequently
co-occur with IDH1 or IDH2 mutations (Chou et al., 2011a;
Weissmann et al., 2012). Lastly, despite some data indicat-
ing no association between cytogenetics and TET2 status in
MPN, TET2 mutations occur more often in the presence of
normal karyotype and intermediate-risk AML (Hussein et al.,
2010; Weissmann et al., 2012). In this cytogenetic setting,
TET2 mutations do predict significantly worse OS in AML
(Chou et al., 2011a).

Although few TET2 recurrent mutations have been
reported, many mutations result in a frameshift or early stop
codon and are therefore inactivating (Tefferi et al., 2009b). In
fact, the largest proportion of nonsense mutations occur in
exon 3, resulting in a truncated protein lacking the C-terminal
catalytic domain (Moran-Crusio et al., 2011). Additionally,
several missense mutations have been characterized as
loss-of-function, with Ko and colleagues reporting impaired
hydroxylation of 5-mC when mutant TET2 was overexpres-
sed in HEK-293Tcells. Furthermore, TET2mutation status is
significantly correlated with decreased global 5-hmC in
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myeloid tumors (Ko et al., 2010; Konstandin et al., 2011).
Functional studies manipulating TET2 have also been able
to recapitulate phenotypes that are characteristic of myeloid
neoplasms, suggesting that TET2 loss may be a key event in
leukemic transformation. For example, a conditional mouse
model for TET2 loss in the hematopoietic compartment
resulted in increased HSC self-renewal and myeloprolifera-
tion including splenomegaly, monocytosis, and extramedul-
lary hematopoiesis (Moran-Crusio et al., 2011). This is
consistent with other studies showing that TET2 inactivation
leads to decreased 5-hmC in HSCs, amplification of the stem
cell population, and may skew HSCs toward a myeloid
lineage (Pronier et al., 2011; Quivoron et al., 2011).

The true effect of TET2 mutations on DNA methylation
status has been difficult to ascertain. Despite an expected
increase in 5-mC following TET2 inactivation, several stud-
ies have reported a global decrease in methylation (Ko et al.,
2010; Yamazaki et al., 2012). However, analysis of specific
gene promoters shows mixed results in TET2 mutant sam-
ples, frequently exhibiting promoter-specific hypermethyla-
tion in spite of global hypomethylation (Perez et al., 2012;
Wu et al., 2011; Yamazaki et al., 2012). Still, Ko and col-
leagues noted that several AML patients with wild-type TET2
had 5-hmC levels very similar to those patients with mutant
TET2 (Ko et al., 2010). This suggests a more complex
relationship between TET2, DNA methylation status, and
malignant transformation.

In the past year, exciting new evidence has emerged to
suggest a more diverse role for TET2 in epigenetic regula-
tion. In addition to known associations with polycomb
repressive complex (PRC) regulator SIN3A and NURD
complex member MBD3 (Wu et al., 2011; Yildirim et al.,
2011), TET2 was recently identified as a direct binding
partner with O-linked beta-N-acetylglucosamine transferase
(OGT), an enzyme that marks histone H2B S112 at active
transcription start sites (TSS) (Chen et al., 2013b). Although
OGT doesn’t influence TET2 activity in functional assays,
TET2 seems to actively target OGT to unmethylated pro-
moters and activate transcription via other means (Vella
et al., 2013). Furthermore, Deplus and colleagues showed
that TET2 and OGT co-localize at active promoters marked
by H3K4me3 through a direct interaction with host-cell factor
1 (HCF1) and that knockdown of TET2 leads to global
decreases of H3K4me3 and GlcNAcylation (Deplus et al.,
2013). Another direct interaction has been described
between TET2 and EBF1, a transcription factor that is
associated with transcriptional activation and “poised” chro-
matin (Guilhamon et al., 2013; Treiber et al., 2010). Addi-
tional binding partners have also been reported within the
past year, including NANOG and IDAX (Costa et al., 2013;
Ko et al., 2013). Lastly, several novel miRNAs were dis-
covered to negatively regulate TET2 expression, offering a
possible explanation for TET-associated transformation in
the absence of any genomic alterations (Cheng et al., 2013;
Fu et al., 2013; Song et al., 2013). Collectively, evidence is

mounting that TET2 inactivation in cancer may alter more
than just DNA methylation; in fact, transformation may result
considerably from disrupted interactions with other epige-
netic regulators and development-associated transcription
factors.

IDH1/2

Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydro-
genase 2 (IDH2) are two homodimeric metabolic enzymes
that convert isocitrate to α-ketoglutarate (α-KG) while
reducing NADP+ to NADPH. IDH1 is present in the cytosol
and peroxisomes whereas IDH2 is located exclusively in
mitochondria (Geisbrecht and Gould, 1999; Winkler et al.,
1986; Xu et al., 2004). Frequent recurrent mutations in IDH1
were initially discovered in GBM (12%) following whole-ex-
ome sequencing of 22 patient tumor samples (Parsons et al.,
2008). Further sequencing efforts revealed that mutations
are most prevalent in WHO grade II/III gliomas (71%) and
secondary GBMs (88%) but less common in primary GBMs
(7%) (Balss et al., 2008). Subsequent studies have shown
that IDH2 mutations are also enriched in WHO grade II/III
gliomas, albeit less frequently, and that IDH1/2 mutations
occur in a mutually exclusive manner (Hartmann et al.,
2009). These data indicate IDH mutation is an early event in
glioma oncogenesis, frequently preceding known alterations
like TP53 mutation and 1p/19q loss (Watanabe et al., 2009).
Interestingly, recent data suggest IDH1 and IDH2 mutations
may actually differentially associate with astrocytoma and
oligodendrogliomas, respectively (Hartmann et al., 2009).
IDH mutations are associated with MGMT promoter hyper-
methylation, TP53 mutation, 1p/19q codeletion, ATRX inac-
tivation, younger age, and improved prognosis while being
inversely correlated with EGFR amplification in glioma (Chou
et al., 2010; Wiestler et al., 2013; Yan et al., 2009; Zou et al.,
2013). Further, although early studies could not find any IDH
mutations in other types of solid tumors (Bleeker et al., 2009;
Kang et al., 2009), recurrent mutations have since been
identified in chondrosarcoma (56%), cholangiocarcinoma
(23%), melanoma (10%), and prostate cancer (2%) (Amary
et al., 2011; Borger et al., 2012; Ghiam et al., 2012; Shibata
et al., 2011).

Soon after the discovery of IDH mutations in glioma,
recurrent mutations of IDH were also identified in AML
(Green and Beer, 2010; Mardis et al., 2009). Similar to gli-
oma, IDH1 and IDH2 mutations are mutually exclusive,
though the mutational frequency of IDH in AML is much
lower (23%) (Chou et al., 2011b; Ward et al., 2010). In
contrast, the utility of IDH mutation status as an independent
prognostic marker in AML is less clear. In a convincing
cohort of 493 adult patients with AML, Chou and colleagues
found that IDH1 mutation had no impact on OS (Chou et al.,
2010). Still, other studies have suggested a more disparate
role, with mutation in IDH1 and IDH2 conferring poor and
improved prognosis, respectively (Chou et al., 2011b;
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Schnittger et al., 2010). Notably, although another large
cohort of 805 patients found that IDH mutation did not cor-
relate with prognosis, a subset of patients with IDH mutation
and CN-AML, NPM1 mutation, and no FLT3-ITD did show
significantly reduced OS and RFS (Paschka et al., 2010).
Therefore, it is likely that the use of prognostic subsets—IDH
status along with other genetic markers—may improve the
utility of IDH status as a biomarker in AML. Other features
that correlate with IDH mutation status include normal
karyotype, intermediate-risk cytogenetics, NPM1 mutation,
and M1 AML subtype (Chou et al., 2010; Schnittger et al.,
2010).

To date, practically all IDH mutations found in cancer are
heterozygous and highly recurrent. Amino acid substitutions
at residues IDH1-R132, IDH2-R172 and IDH2-R140Q are
the most common, with considerable variability at R132 (R/
H, R/C, R/S, R/G, R/L, R/V) and R172 (R/G, R/M, R/K)
(Balss et al., 2008; Yan et al., 2009). The remarkable
absence of any frameshift or nonsense mutations, deletions,
or epigenetic silencing provided early evidence that IDH
mutations were activating (Flanagan et al., 2012; Zhao et al.,
2009). The R132 residue is located in the active site of IDH1
where it forms 2 hydrogen bonds with α- and β- carboxylate
of isocitrate, its substrate (Nekrutenko et al., 1998; Xu et al.,
2004). Initially, it was believed that these mutations may be
loss-of-function or dominant-negative, as mutant IDH
showed a reduced affinity for isocitrate and produced
markedly less α-KG and NADPH in vitro (Yan et al., 2009;
Zhao et al., 2009). However, an in vitro metabolite screen
revealed that IDH mutations are neomorphic, producing the
novel oncometabolite 2-hydroxyglutarate (2-HG) through
heterodimer formation with the remaining wild-type IDH1.
This was also verified in patient samples, with a strong
correlation between the amount of 2-HG in tumor tissue and
IDH1/2 mutation status (Dang et al., 2009; Ward et al.,
2010). In fact, 2-HG levels are increased 10–100 fold in
patient sera and can be used to reliably diagnose IDH status
and monitor response to therapy, though this application
may be restricted to myeloid neoplasms (Capper et al., 2012;
DiNardo et al., 2013; Ward et al., 2010).

The effects of mutant IDH are pleiotropic and affect
numerous cell processes including DNA methylation, histone
methylation, HIF1a signaling, collagen synthesis, and
metabolism (Cairns and Mak, 2013). Remarkably, α-KG
levels are unchanged in mutant IDH AML and glioma (Dang
et al., 2009; Gross et al., 2010), and it is now clear that 2-HG-
mediated inhibition of 2-OG-dependent dioxygenases is the
dominant mechanism by which IDHmutations are oncogenic
(Xu et al., 2011). Early data from the Cancer Genome Atlas
project first identified the glioma hypermethylator phenotype
(G-CIMP) in GBM and its association with IDH mutations
(Laffaire et al., 2011; Noushmehr et al., 2010). Following this,
Figueroa and colleagues demonstrated that 2-HG inhibition
of the α-KG-dependent enzyme TET2 actively generates the
hypermethylator phenotype in AML. Further, they showed

that TET2 and IDH mutations are mutually exclusive in AML,
result in overlapping methylation signatures, and impair HSC
differentiation in 32D myeloid cells (Figueroa et al., 2010).
Similarly, work from our lab demonstrated that IDH1mutation
directly causes the G-CIMP phenotype, reduces global
5-hmC through TET2 inhibition, results in hypermethylation
of the repressive histone marks H3K9 and H3K27, and
blocks differentiation (Turcan et al., 2012). It is important to
highlight that widespread loss of 5-hmC is an additional
epigenetic hallmark in IDH or TET2 mutated cancers,
including melanoma, and that reestablishment of the 5-hmC
landscape can suppress tumor invasion and growth in both
melanoma cells and a zebrafish model (Lian et al., 2012).
Interestingly, IDH-associated increases in histone methyla-
tion are likely due to 2-HG-mediated inhibition of the Jumonji
C (JmjC)-domain-containing histone demethylases (Lu et al.,
2012). Still, others have proposed additional mechanisms in
IDH-mutated cancers such as HIF1a stabilization through
PHD inhibition, altered ECM structure due to decreased
hydroxylation of collagen, and possible metabolic shifts in
NADP/NADPH ratio (Sasaki et al., 2012; Zhao et al., 2009).

Recently, several exciting studies have shed light on
novel mechanisms by which IDH mutations initiate malignant
transformation and how underlying mechanisms may be
exploited for therapeutic gain. In mouse models of leukemia
and melanoma, IDH mutants accelerated cell cycle transition
by activation of the MAPK/ERK pathway and repression of
tumor suppressors CDKN2A and CDKN2B (Chaturvedi
et al., 2013; Shibata et al., 2011). Although several studies
have noted that IDH mutations cause increased colony for-
mation in soft agar and enhanced proliferation, two mouse
models for leukemia found that IDH mutation primes cells by
inducing an MDS- or MPN-like state. However, combining
IDH1 mutants with HOXA9, or IDH2 mutants with FLT3 or
NRAS, was sufficient to initiate transformation (Chaturvedi
et al., 2013; Chen et al., 2013a; Xu et al., 2011). This may be
cancer-specific though, as mutant IDH2 alone was recently
shown to be sufficient to induce sarcoma formation in mice,
at least in one model system (Lu et al., 2013). Regardless,
the primary mechanism underlying IDH-induced oncogene-
sis in several model systems is a block in cell differentiation
(Pirozzi et al., 2013). Both groups showed restoration of
differentiation and increased apoptosis following treatment
with IDH inhibitor HMS-101 or Brd4 inhibitor JQ1. Similarly,
Losman and colleagues showed that IDH mutant leukemic
transformation is specific to the (R)-enantiomer of 2-HG,
which can independently promote cytokine independence
and block differentiation. Again, this transformation was
reversible with IDH inhibitor AGI-5198 (Losman et al., 2013).
Lastly, IDH inhibition can reverse novel EMT-associated
expression patterns, though a lengthy delay to phenotypic
change suggests more stable epigenetic alterations may be
to blame (Grassian et al., 2012).

Despite the targeted nature of IDH inhibitors, IDH muta-
tion likely unleashes epigenetic marks that are themselves
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selectable, such as DNA methylation. There is thus interest
in the therapeutic potential of 5-azacytidine (5-aza) and
decitabine (DAC), due to the complex downstream effects of
IDH mutations on the cancer methylome. In order to deter-
mine if broader epigenetic therapies could “unlock” glioma
initiating cells (GIC) from a dedifferentiated state, we treated
both wild-type and mutant IDH cell lines with DAC and/or
IDH inhibitor AGI-5198. Along with Borodovsky and col-
leagues, our group found that hypomethylating agents
potently induce differentiation, impair colony formation, and
suppress in vivo growth in IDH mutant cells only (Borodov-
sky et al., 2013; Turcan et al., 2013). This demonstrates that
mutant IDH-induced DNA methylation likely plays a role in
maintaining the self-renewal capacity of glioma tumor initi-
ating cells. Similar effectiveness has also been seen in
leukemia and chondrosarcoma (Chaturvedi et al., 2013;
Chen et al., 2013a; Lu et al., 2013). Interestingly, IDH inhi-
bition using the mutant IDH1 inhibitor AGI-5198 was not
nearly as effective, which suggests that broader epigenetic
therapies may be necessary to reverse more permanent
changes induced by long exposure to mutant IDH. In addi-
tion, combination therapy with other IDH affected processes
such as histone hypermethylation may have a role and
warrant further investigation.

HISTONE METHYLATION

Histone methylation is a reversible process that takes place
at the amino acid side chains of lysine, arginine, and histi-
dine residues. Lysine methylation on histones H3 and H4 is
the best characterized and catalyzed by the lysine methyl-
transferases (KMTs) through the required methyl group
donor SAM. All of the KMTs except DOTL1/KMT4 have a
catalytically active SET domain and are highly specific to
both histone residue and degree of methylation (mono- vs.
di- vs. tri-methylation) (Feng et al., 2002; Rea et al., 2000).
Generally, methylation at H3K4, H3K36, and H3K79 corre-
sponds to euchromatic or transcriptionally active regions of
the genome, whereas methylation at H3K9, H3K27, and
H4K20, is associated with heterochromatic regions and gene
silencing. In addition, each residue is capable of four meth-
ylated states: unmethylated or mono-/di-/tri-methylated. This
provides further regulatory diversity in the histone code. For
example, H3K4me2/3 is found at TSSs of active genes,
whereas H3K4me1 tends to localize to enhancer regions
(Greer and Shi, 2012; Kampranis and Tsichlis, 2009).

In contrast, the lysine-specific demethylases (KDMs)
work in opposition to the KMTs through the catalytic removal
of methylation marks on histone tails. The two families of
KDMs responsible are the (FAD)-dependent amine oxidases
and the larger JmjC-containing family of α-KG/Fe(II)-ion
dependent oxygenases (Shi and Whetstine, 2007). KDM1A/B
(LSD1/2) and KDM5A-D (JARID1A-D) catalyze demethyla-
tion at H3K4, whereas KDM2A/B (JHDM1A/B) and KDM4A-
C (JMJD2A-C) target H3K36, leading to repressed gene

transcription at these sites. Alternatively, transcriptional
activation is induced in part by demethylation at H3K9 and
H3K27 by KDM1A, KDM3A-C (JHDM2A-C), or KDM4A-D
and KDM6A/B (UTX/JMJD3), respectively (Varier and Tim-
mers, 2011). Due to the broad and essential nature of these
epigenetic marks across the genome, genetic aberrations of
histone modifiers have powerful effects on vital cellular
processes such as differentiation and cell cycle control,
among others.

Writers (KMTs)

EZH2

EZH2/KMT6 is the enzymatic component of the polycomb
repressor complex 2 (PRC2), which is responsible for
methylation at H3K27 and subsequent gene silencing (Ki-
rmizis et al., 2004). Other essential subunits of the PRC2
complex through which EZH2 interacts include embryonic
ectoderm development (EED), suppressor of zeste 12
homologue (SUZ12), and RBAP48/RBBP4. Collectively,
these polycomb group (PcG) proteins have been shown to
regulate vital cellular processes including differentiation, cell
identity, stem-cell plasticity, and proliferation (Margueron and
Reinberg, 2011; Shih et al., 2012). As a result, aberrations in
any PRC2 component can have powerful physiologic con-
sequences on the cell.

Alterations in EZH2 were first discovered in breast and
prostate cancer, where amplification and overexpression first
implied it may function as an oncogene (Kleer et al., 2003;
Varambally et al., 2002; Yang and Yu, 2013). This finding
was validated both in vitro and in vivo, with EZH2 overex-
pression proving sufficient to drive proliferation in cancer
cells and transform primary fibroblasts (Bracken et al., 2003;
Croonquist and Van Ness, 2005). Recent sequencing stud-
ies have identified numerous mutations of EZH2 in a variety
of leukemias and lymphomas, including follicular lymphoma
(FL; 7%–22%), diffuse large B-cell lymphoma (DLBCL; 14%–

21.7%), high grade B-cell lymphoma (18%), MDS/MPN (6%–

13%), CMML (11.1%), T-ALL, and AML (Abdel-Wahab et al.,
2011; Bodor et al., 2011; Capello et al., 2011; Ernst et al.,
2010; Grossmann et al., 2011; Lohr et al., 2012; Makishima
et al., 2010; Morin et al., 2010; Nikoloski et al., 2010; Ryan
et al., 2011; Zhang et al., 2012). Interestingly, frequent mis-
sense and truncating mutations were observed, which gen-
erated some confusion in the field about whether EZH2
could possess both pro- and anti-oncogenic functions.
Clinically, EZH2 mutations seem to commonly predict poor
prognosis—worse OS/leukemia-free survival (LFS), high-
risk IPSS score—especially in myeloid malignancies (Gug-
lielmelli et al., 2011; Khan et al., 2013; Nikoloski et al., 2010).
Additionally, EZH2 mutation associates with BCL2 rear-
rangement in FL and germinal center B-cell like DLBCL
(GCB-DLBCL) and is notably absent from activated B-cell
like DLBCL (ABC-DLBCL) (Beguelin et al., 2013; Morin
et al., 2010; Ryan et al., 2011).
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One landmark finding that emerged from the wealth of
recent sequencing data was the identification of the highly
recurrent heterozygous Y641 mutation (Y/F, Y/N, Y/H, Y/C)
in FL, DLBCL, and other lymphoid neoplasms (Bodor et al.,
2013; Bodor et al., 2011; Morin et al., 2010). Initially thought
to be inactivating due to reduced catalytic ability against a
short H3-like peptide in vitro, Y641 mutant EZH2 exhibited a
powerful gain-of-function phenotype when incubated against
the entire nucleosomal unit (Sneeringer et al., 2010). In
addition, Sneeringer and others have observed a powerful
synergy between the wild-type and Y641 forms of EZH2 both
in vitro and in vivo. Whereas EZH2 is very efficient at cata-
lyzing monomethylation of H3K27 but not di-/tri-methylation,
EZH2 Y641 shows enhanced ability for di-/tri- methylation at
H3K27 (Ryan et al., 2011; Wigle et al., 2011; Yap et al.,
2011). Similar findings have also been observed with A677G
and A687V mutant EZH2, though these are far less pre-
valent in cancer (Majer et al., 2012; McCabe et al., 2012a).
Since almost all EZH2 gain-of-function mutations are het-
erozygous, the overall consequence of these mutations is a
cooperative and thereby efficient silencing of genes associ-
ated with the repressive H3K27 mark.

Recent studies have shown that mutant EZH2-driven
tumors can be effectively targeted with small molecule
inhibitors. Knutson and colleagues were the first to describe
potent phenotypic effects in lymphoma cell lines, following
treatment with the SAM-competitive EZH2 inhibitor
(EPZ005687) (Knutson et al., 2012). This inhibitor was highly
selective, inducing cell death in mutant EZH2-expressing
cells only. As expected, these cells showed global reduction
of the H3K27me2/me3 histone mark and significant enrich-
ment of cell cycle gene sets by GSEA. The more recent
EZH2 inhibitor GSK126 was also highly selective for mutant
EZH2 lymphoma cells in vivo and led to increased activation
of known EZH2 target genes, such as TXNIP and
TNFRSF21 (McCabe et al., 2012b). Although EZH2 muta-
tion alone may be insufficient to induce development of
B-cell lymphoma, new evidence suggests it functions as a
master regulator of GCB phenotype through repression of
CDKN1A, IRF4, and PRDM1 (Beguelin et al., 2013). Due to
frequent activation of EZH2 in lymphoma, these new tar-
geted therapies hold exciting promise in the clinic.

SETD2

The major KMT responsible for H3K36 trimethylation is
SETD2/KMT3A, which is a novel candidate tumor suppres-
sor gene (TSG) (Edmunds et al., 2008). Gene deletions in
clear cell renal cell carcinoma (ccRCC)-derived cell lines are
common, reduced expression is seen in breast tumors, and
loss is associated with decreased H3K36 trimethylation
(Duns et al., 2012; Duns et al., 2010; Newbold and Mokbel,
2010). SETD2 mutations are quite common in ccRCC
(7.4%–11.6%), pediatric high-grade glioma (HGG; 15%), and
adult HGG (8%) (Cancer Genome Atlas Research Network,

2013; Dalgliesh et al., 2010; Duns et al., 2010; Fontebasso
et al., 2013; Hakimi et al., 2013b; Varela et al., 2011). Almost
all of the mutations characterized so far are frameshift or
nonsense and therefore truncating, further suggesting
SETD2 may be an important TSG in select malignancies
(Hakimi et al., 2013a). Furthermore, Hakimi and colleagues
found that SETD2 mutations were significantly associated
with worse cancer-specific survival (CSS) in ccRCC (Hakimi
et al., 2013b). Though phenotypic effects of SETD2 inacti-
vation have not been clarified, recent research showed that
SETD2 loss triggers MSI and can increase genome-wide
mutation rates through alterations in H3K36 methylation (Li
et al., 2013a; Schmidt and Jackson, 2013).

MLLs

The mammalian mixed lineage leukemia (MLL) family of
genes encodes a series of active (MLL1–4/KMT2A–D) and
inactive (MLL5/KMT2E) KMTs, which have all been impli-
cated in cancer. MLL1–4 are responsible for methylation at
H3K4 and share a common core formed by WDR5, RbBP5,
Dpy-30, and Ash2L (Varier and Timmers, 2011). Notably,
MLL1–2 form a complex along with the menin (MEN1) tumor
suppressor and recent evidence shows that H3K27
demethylase KDM6A/UTX can complex with MLL2–4
(Hughes et al., 2004; Yokoyama and Cleary, 2008; Yokoy-
ama et al., 2005).

The earliest known alterations in MLL family genes
involved frequent rearrangements of MLL1 at 11q23, with
recombination involving more than 40 different partner genes
and occurring in 60%–80% of infants with ALL or AML (Di-
martino and Cleary, 1999; Pais et al., 2005; Thirman et al.,
1993). Since then, several missense and truncating muta-
tions have been identified in MLL1 in bladder, lung, and
breast cancer (Gui et al., 2011; Kan et al., 2010). Although
MLL1 acts as a dominant oncogene in liquid tumors, these
new discoveries suggest a different recessive role for MLL1
in some solid tumors (Krivtsov and Armstrong, 2007). Infre-
quent truncating mutations have also been noted in MLL4 in
medulloblastoma and head and neck squamous cell carci-
noma (HNSCC), suggesting a minor but alternative role for
this family member as well (Pugh et al., 2012; Stransky et al.,
2011).

Notably, recently, many new mutations have been iden-
tified in both MLL2 and MLL3, showing diversity of both
mutation and tumor type. MLL2 and MLL3 mutations are
frequently nonsense or frameshift, resulting in a truncated
protein lacking the active SET domain (Morin et al., 2011;
Parsons et al., 2011; Pasqualucci et al., 2011b; Pugh et al.,
2012; Stransky et al., 2011). Along with MLL1/4, MLL2/3
mutations suggest a dual role for MLL family proteins in
oncogenesis, which may depend heavily on cellular context.
In addition, mutations have been discovered in numerous
cancers, occasionally at high frequency, including colon
(MLL3, 14%–17%), DLBCL (MLL2, 24%–32%), FL (MLL2,
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89%), AML, breast, GBM, RCC, prostate, pancreatic, blad-
der, medulloblastoma, and HNSCC (Balakrishnan et al.,
2007; Dalgliesh et al., 2010; Gui et al., 2011; Li et al., 2013b;
Lindberg et al., 2013b; Mann et al., 2012; Morin et al., 2011;
Parsons et al., 2008; Parsons et al., 2011; Pasqualucci et al.,
2011b; Pugh et al., 2012; Sjoblom et al., 2006; Stransky
et al., 2011; Vakoc et al., 2009; Watanabe et al., 2011).
Unfortunately, functional data remains sparse and the
importance of these mutations has yet to be characterized.
Watanabe and colleagues made the interesting observation
that in colorectal carcinoma, MLL3 mutations were associ-
ated with increased MSI, though no mechanism has been
proposed (Watanabe et al., 2011). Regardless, they are
intriguing candidates for further study in cancer, especially
since MLL family proteins are important regulators of HOX
proteins and differentiation (Wang et al., 2009a).

NSD1/2

Histone-lysine N-methyltransferase NSD2/MMSET was first
implicated in cancer as a target for rearrangement [t(4;14)
(p16.3;q32)] in 15%–20% of multiple myeloma (MM) patients
(Chesi et al., 1998). This translocation results in aberrant
upregulation of NSD2, which first suggested that it may be
an oncogene. Subsequent work has shown that knockdown
in MM KMS11 cells leads to apoptosis and re-expression of
wild-type NSD2 causes increased proliferation (Martinez-
Garcia et al., 2011). Furthermore, overexpression of wild-
type NSD2 is sufficient to transform NSD2-/- cancer cells
in vivo and in mouse embryonic fibroblasts (MEFs) (Kuo
et al., 2011). Functionally, interactions with HDAC1/2 and
catalytic activity at H3K4 and H4K20 have been proposed,
though these may be minor (Marango et al., 2008). It is now
clear that the NSD2-catalyzed conversion of unmethylated
H3K36 to mono- or di-methylated forms, with concomitant
decreases in H3K27me3, is the dominant mechanism driving
NSD2-associated oncogenic reprogramming (Kuo et al.,
2011; Li et al., 2009). In fact, Kuo and colleagues demon-
strated that NSD2 SET catalytic activity is required for tran-
scriptional activation at several oncogenic loci (TGFA, MET,
PAK1, RRAS2). Pathway analyses have also identified the
following as significantly altered in mutant NSD2 tumors:
TP53 pathway, cell cycle, DNA repair, focal adhesion, and
Wnt (Kuo et al., 2011; Martinez-Garcia et al., 2011).

Recently, sequencing projects revealed the presence of a
highly recurrent mutation in NSD2 (E1099K), which is pres-
ent in 7.5% of pediatric B-ALL and other lymphoid neo-
plasms (Jaffe et al., 2013; Oyer et al., 2013). These studies
showed that NSD2 E1099K leads to enhanced colony for-
mation in soft agar and expected increases and decreases in
H3K36me2 and H3K27me3, respectively. This new discov-
ery has exciting therapeutic potential—similar to the acti-
vating mutations in EZH2 described above. Additionally, the
related KMT NSD1 was recently discovered to harbor point
mutations in multiple cancers, including HNSCC and AML

(Dolnik et al., 2012; Yan et al., 2011). If these mutations
prove to be similarly activating, both NSD members will
represent completely novel areas of epigenetic regulation
through which small molecule targeted inhibition could be
useful.

Erasers (KDMs)

KDM6A

Among the first cancer-associated mutations in KDMs that
were identified were those in KDM6A following sequencing
of 1,390 patient tumor samples (van Haaften et al., 2009).
Remarkably, KDM6A mutations were found to be wide-
spread across both solid and liquid tumors, including AML,
chronic myelogenous leukemia (CML), T-ALL, MM, Hodg-
kin’s lymphoma (HL), TCC, breast, colon, esophageal,
pancreas, endometrial, GBM, small cell lung cancer (SCLC),
non-small cell lung cancer (NSCLC), and RCC (Dalgliesh
et al., 2010; Gui et al., 2011; Mann et al., 2012; Mar et al.,
2012; Ross et al., 2013; van Haaften et al., 2009). Since
then, KDM6A mutations have also been discovered in other
tumors such as prostate cancer, medulloblastoma, and
adenoid cystic carcinoma (Ho et al., 2013; Lindberg et al.,
2013a; Robinson et al., 2012). Although these mutations
occur at low frequency in most cancers, KDM6Amutations in
bladder carcinoma are quite common (20%–29%) (Gui et al.,
2011; Poon et al., 2013; Ross et al., 2013). Furthermore,
KDM6A mutations in bladder carcinoma associate with
earlier grade and are inversely correlated with stage (Gui
et al., 2011). Therefore, KDM6A inactivation may be a
powerful driver and early event in bladder oncogenesis.
However, whether KDM6A mutation status holds significant
prognostic value in cancer is yet to be determined.

Despite infrequent inactivation in many cancers, mutation
and functional data have established that KDM6A is a bona
fide tumor suppressor gene. KDM6A is a 1401 amino acid
protein with several N-terminal tetratricopeptide-repeat
(TPR) domains and a single C-terminal Jumonji C (JmjC)
domain (Shpargel et al., 2012). Early sequencing efforts
revealed that a majority of KDM6A mutations are either
frameshift or nonsense, and since most occur before the
active JmjC demethylase domain, they are most likely
inactivating. To test this hypothesis, van Haaften and col-
leagues re-expressed wild-type KDM6A in KDM6A-deleted
cell lines and observed markedly reduced proliferation (van
Haaften et al., 2009). Similarly, we recently showed that
cancer-specific missense mutations in the JmjC domain can
abrogate this growth suppressive effect and may even
contribute to a dominant proliferative phenotype. Further-
more, following overexpression, these tumor-specific
mutants exhibited reduced demethylase activity at the
repressive chromatin mark H3K27me3 (Ho et al., 2013).
Dysregulation of methylation at H3K27 may have important
consequences in cancer, as demethylation of H3K27 at HOX
genes is required for proper differentiation. Interestingly, it
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has also been reported that KDM6A binds directly to the
HOXB1 locus and that its activation requires KDM6A cata-
lytic activity (Christensen et al., 2007; Morales Torres et al.,
2013). In addition to regulation through HOX gene targets,
KDM6A catalytic activity also activates RB pathway genes
through HBP1 to further influence differentiation and cell
cycle control (Herz et al., 2010; Wang et al., 2010).

In addition to contributing to tumor suppression via its
catalytic domain, KDM6A also has important demethylase-
independent roles in cancer. A recent study found that
conditional inactivation of KDM6A in a mouse model did not
change global levels of H3K27me3, though it did contribute
to a MDS-like phenotype and reduced migration of HSCs
(Thieme et al., 2013). Furthermore, it is also known that
KDM6A can bind to KMTs MLL2–4 to promote H3K4 meth-
ylation independent of its catalytic domain and that
demethylase-inactive KDM6A is sufficient to induce differ-
entiation (Cho et al., 2007; Issaeva et al., 2007; Lee et al.,
2007; Morales Torres et al., 2013). In fact, Wang and col-
leagues mapped the chromatin occupancy of KDM6A,
H3K4me2, and H3K27me3 in primary human fibroblasts and
discovered that 62% of KDM6A target genes are enriched for
univalent H3K4me2 (Wang et al., 2010). Therefore, KDM6A
has at least two independent, yet complimentary, mecha-
nisms for shaping the epigenetic landscape in cancer.
Indeed, one study found that inactivating mutations in the
catalytic JmjC domain caused increased growth yet also led
to simultaneous increases and decreases in H3K27me3 and
H3K4me1, respectively (Herz et al., 2010). As a result, it is
likely that the KDM6A-associated phenotypes in cancer are
diverse and are linked to the type and location of each
driving mutation.

Other KDMs

Although KDM6A mutations are the most prevalent and best
characterized among the KDMs, several others have been
identified as significantly mutated across cancer, albeit at low
frequency (Cerami et al., 2012; Gao et al., 2013; Parsons
et al., 2011; Pasqualucci et al., 2011b). Uniquely, ccRCC
harbors mutations in many of the KDMs, including KDM1A,
KDM2B, KDM3A, KDM3B, KDM4A/B, and KDM5C (Dalg-
liesh et al., 2010; Hakimi et al., 2013a; Larkin et al., 2012;
Shi et al., 2011). The natural function of these KDMs is still
being determined, but these studies and others suggest
KDM1A, KDM4A–C, and KDM5B are putative oncogenes,
whereas KDM6A/B and KDM3B/C are tumor suppressors.
Also, KDM2A/B and KDM5A seem likely to be both pro- and
anti-oncogenic, depending on context (Rotili and Mai, 2011).
More recently, Niu and colleagues provided the first in vivo
evidence that KDM5C serves as a tumor suppressor fol-
lowing VHL loss in ccRCC and that cancer-specific muta-
tions were inactivating. Furthermore, they demonstrated that
HIF2a binds directly to KDM5C, targeting KDM5C to deme-
thylate H3K4me3 at HIF-repressed gene loci (Niu et al.,

2012). It will be exciting to determine if some of these
mutations are true oncogenic drivers. Additionally, if gain-of-
function mutants are identified in KDM oncoproteins, these
may be prime candidates for existing KDM inhibitors or new
targeted therapies (Rotili and Mai, 2011).

HISTONE ACETYLATION

Lysine residues on histone tails may also undergo another
form of covalent modification through the addition of an
acetyl functional group. This process uniquely results in the
neutralization of charge normally associated with lysine
residues, which weakens the electrostatic interaction
between histones and negatively charged DNA. As a result,
it is believed that histone acetylation primarily results in a
more “open” chromatin configuration, serving as a “mark” of
active gene transcription. Several ChIP-seq studies have
now confirmed this, showing localization of acetylated his-
tones at enhancers, promoters, and even throughout the
transcribed region of active genes (Dawson and Kouzarides,
2012; Heintzman et al., 2007; Wang et al., 2008). In addition
to altering the chromatin state directly, these specific histone
“marks” further act to recruit other remodelers containing
“reader” bromodomains and tandem plant homeodomain
(PHD) fingers (Taverna et al., 2007).

The process of histone acetylation is carried out by the
lysine acetyltransferase (KAT) enzymes, of which there are
two major classes: Type-A, which are usually found in the
nucleus and Type-B, which are cytoplasmic and act on free
histones. Dynamic regulation of acetylation is also catalyzed
by the histone deacetylase (HDAC) enzymes, which oppose
the actions of KATs and remove acetyl groups from histone
tails. Interestingly, these enzymes are capable of modifying
other non-histone proteins—including p53, Rb, and MYC—
and have additional roles as transcriptional cofactors, which
has led to many challenges in determining their specific roles
in cancer and other disease processes (Dawson and Ko-
uzarides, 2012; Iyer et al., 2004).

Writers (CREBBP and EP300)

CREB-binding protein (CREBBP) and E1A binding protein
p300 (EP300) are structurally distinct from other KATs and
have unique broad substrate specificity, including the ability
to acetylate all four histones in vitro. In fact, both proteins are
highly conserved, with 75% similarity across their entire
length and 63% homology at the amino-acid level (Iyer et al.,
2004; Shiama, 1997). Not surprisingly, many functional
similarities exist. Both proteins engage in several diverse
functions, including chromatin remodeling via KAT activity,
acetylation of association proteins (p53, Rb, E2F), and the
ability to act as scaffolds for transcription factors and other
transcriptional machinery (Bannister and Kouzarides, 1996;
Gu and Roeder, 1997; Nakajima et al., 1997). Despite being
some of the earliest epigenetic modifiers identified, their
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roles in both normal physiology and disease are just begin-
ning to be appreciated.

Both CREBBP and EP300 have long been linked to
cancer, though the specific roles they play have been harder
to elucidate. Suspicion that CREBBP may be a tumor sup-
pressor first arose in the mid-1990s, when heterozygous
germline mutations were identified in the setting of Rubin-
stein-Taybi syndrome, a developmental disorder with an
increased prevalence of cancer, including leukemia and
lymphoma (Petrij et al., 1995). Around the same time, EP300
was first shown to bind to the E1A viral oncoprotein, sug-
gesting it may also function as a tumor suppressor (Eckner
et al., 1994). Soon after these discoveries, the first genetic
alteration of CREBBP in cancer was identified in M4/M5
AML subtypes, albeit a rare t(8,16)(p11,p13) translocation
that fuses the MOZ gene with the N-terminus of CREBBP
(Borrow et al., 1996; Panagopoulos et al., 2001). Interest-
ingly, reports of MOZ-EP300 translocations do exist, though
these events may be exceedingly rare (Lai et al., 1985).
Though a few early studies identified low frequency EP300
mutations in colorectal carcinoma, breast cancer, and gastric
cancer, the full spectrum of mutational inactivation of
CREBBP and EP300 would not be fully evident until the
genomics era.

Genomic and exomic sequencing data from the past
several years have revealed that CREBBP and EP300
inactivation via mutation is more widespread and frequent
than previously thought. For example, CREBBP mutations
have now been described in NHL (21%), DLBCL (29%), FL
(32.6%), TCC (13%), ACC (7%), and relapsed ALL (18.3%),
with EP300 mutations occurring slightly less frequently in
NHL (7%), DLBCL (10%), FL (8.7%), TCC (13%), ACC, and
relapsed ALL (Gui et al., 2011; Ho et al., 2013; Morin et al.,
2011; Mullighan et al., 2011; Pasqualucci et al., 2011a).
Additionally, CREBBP and EP300 are collectively mutated in
up to 18% of SCLC (Peifer et al., 2012). Interestingly,
mutations in both genes are mutually exclusive, suggesting
functional equivalency, at least in part. Additionally, the
majority of mutations are heterozygous, indicating that both
genes most likely function as haploinsufficient tumor sup-
pressors. In line with this, an earlier mouse study showed
that heterozygous CREBBP loss led to increased neoplasia
over wild-type mice (Kung et al., 2000). In almost all of these
studies, mutations strongly clustered in the catalytic KAT
domain, several of which exhibit reduced acetyltransferase
ability in vitro at H3K18 and in the non-histone substrates
Bcl6 and p53 (Mullighan et al., 2011; Pasqualucci et al.,
2011a; Peifer et al., 2012). Though the targets of CREBBP/
p300 are diverse, it seems likely that disruption of acetyl-
transferase ability can be a main contributor to tumor
formation.

Despite the identification and initial functional character-
ization of these tumor-specific mutations, the physiologic
consequences leading to oncogenesis remain obscure. For
example, in SCLC, CREBBP/EP300 mutations do not lead

to any obvious concerted shifts in gene expression, even
though several reported mutations are inactivating in vitro
(Peifer et al., 2012). Due to the diverse roles of CREBBP and
p300, it is possible that some inactivating mutations exert
phenotypic consequences through other non-epigenetic
mechanisms. For example, a more recent discovery showed
that both proteins exhibit acetyltransferase specificity for
histones H3 and H4 at double-strand break (DSB) sites,
facilitating the recruitment of the SWI/SNF chromatin
remodeling complex (Ogiwara et al., 2011). Also, CREBBP
KAT mutations favor constitutive activity of the Bcl6 onco-
gene over p53, which may be alone sufficient to promote
tumorigenesis. Lastly, paradoxical roles for CREBBP/EP300
have been described recently. For example, EP300 is
actually upregulated in melanoma cell lines, and inhibition of
KAT function in vitro reduces melanoma tumor cell growth
(Yan et al., 2013). Additional experiments will be necessary
to help identify functional consequences of these mutations
and in what specific contexts these two KATs function as
tumor suppressors.

Erasers (HDACs)

In contrast to acetyltransferases, the 18 member HDAC
family is responsible for the removal of acetyl groups from
lysine residues on histone tails. Similar to KATs, HDACs
have a wide range of protein targets, and are also known to
deacetylate nonhistone substrates (Ellis et al., 2009). The
HDAC family has four major classes, with class I (nucleus), II
(nucleus and cytoplasm), and IV requiring the zinc ion for
catalytic activity. Class III (sirtuins) are catalytically active in
the absence of zinc and share almost no homology with the
other HDACs (New et al., 2012). Notably, several HDACs
have been implicated in cancer. Specifically, functional
experiments have revealed that these HDACs are pro-
oncogenic, with increased apoptosis and reduced prolifera-
tion (Class I) or reduced angiogenesis and cell migration
(Class II) following specific HDAC knockdown (Ellis et al.,
2009). Most importantly, this role is congruent with their
acetyltransferase counterparts, the KATs, which have been
characterized as tumor suppressors (see above).

In the past decade, much work has been done to develop
targeted inhibitors of HDACs, since they are now established
oncogenes in many cellular contexts. These HDAC inhibitors
(HDACi) work to prevent histone deacetylation, facilitating a
more open chromatin configuration and leading to increased
gene transcription. Vorinostat, the first FDA approved
HDACi, is already in use for select neoplasms, and other
more selective HDACi show promising efficacy in early trials
at reducing cell growth and increasing apoptosis (Witt et al.,
2009). Despite the substantial therapeutic potential for
HDACi, there is a need to determine biomarkers for treat-
ment response and resistance.

Sequencing data from the past several years has identi-
fied inactivating mutations in several HDACs, which may
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influence the effectiveness of HDAC inhibitor therapy and
predict overall response in patients (You and Jones, 2012).
Specifically, mutations have now been reported in HDAC2
(colon), HDAC4 (breast), and HDAC9 (prostate) (Berger
et al., 2011; Ropero et al., 2006; Sjoblom et al., 2006). Of
these, the recurrent frameshift mutation of HDAC2 in exon 1
has been the most extensively characterized. This mutation
is incredibly common in colon cancer (21%), resulting in a
premature stop codon and loss of measurable HDAC2
expression in 83% of mutant tumors (Ropero et al., 2006).
Further, HDAC2 mutations are enriched in MSI colon can-
cers (43%) (Hanigan et al., 2008). Importantly, in vitro work
showed that HDAC2-deficient cells were resistant to HDACi
via trichostatin A, exhibiting no hyperacetylation at target
histones H3 and H4 and no reduction in proliferation com-
pared to wild-type HDAC2-expressing cells (Ropero et al.,
2006). Recent work has identified the pro-apoptotic gene
APAF1 as a likely target for repression by HDAC2, providing
a specific mechanism for both HDACi efficacy and resis-
tance in HDAC2 mutant cells, where HDACi does not
appreciably alter APAF1 levels (Hanigan et al., 2008). Lastly,
although there is an important role for using HDAC mutation
status as a predictor of HDACi treatment response, Ropero
and colleagues have further shown that the HDAC2mutation
itself can cause changes in gene expression, actively lead-
ing to increased levels of multiple pro-tumorigenic proteins
(Ropero et al., 2008).

CHROMATIN REMODELING

In addition to gene regulation via covalent histone tail modifi-
cations, the ATP-dependent chromatin remodelers also shape
chromatin structure and thereby affect gene expression
patterns. Several multi-unit effectors share this responsibility,
including SWI/SNF, ISWI, INO80, SWR1, and NURD/Mi2/CDH
complexes. In thepast several years, protein componentsof the
SWI/SNF complex have been found to be frequently inactivated
in cancer, and subsequent work has solidified their status as
bona fide epigenetic tumor suppressors (Wilson and Roberts,
2011).

SWI/SNF complex

The SWI/SNF complex consists of one or two mutually
exclusive catalytic ATPases (SMARCA2/BRM or SMARCA4/
BRG1), a group of conserved core subunits (SMARCB1/
SNF5, SMARCC1/BAF155, SMARCC2/BAF170), and other
variant subunits (Wilson and Roberts, 2011). Two important
SWI/SNF complexes implicated in cancer are the BAF and
PBAF complexes, which contain the mutually exclusive
ARID1A or ARID1B subunits and PBRM1 or BRD7 subunits,
respectively (Reisman et al., 2009; Wang et al., 2013).
Collectively, SWI/SNF complexes remodel chromatin
through the mobilization of nucleosomes both by sliding and
by the ejection/insertion of histone octomers (Saha et al.,

2006). Through these mechanisms, the SWI/SNF com-
plexes have powerful effects on transcriptional regulation,
serving an important role in development through the coor-
dinate activation and repression of critical gene expression
programs. Importantly, specificity is most likely achieved
through the unique combinatorial assembly of the SWI/SNF
complex, facilitated by the sheer size and diversity of the
protein subunit repertoire (Wang et al., 1996).

ARIDs

The AT-rich interactive-containing domain (ARID) gene
superfamily consists of seven members (ARID1–5), of which
the following have now been implicated in cancer: ARID1A/
BAF250a, ARID1B/250b, and ARID2/BAF200. Mutations in
ARID1A are the most widely reported in the literature, with
remarkable frequency, first reported in ovarian clear cell
carcinoma (OCCC; 50%) and endometrioid carcinoma (30%)
(Bosse et al., 2013; Jones et al., 2010; Wiegand et al., 2010).
Mutations in other cancers exist, including medulloblastoma,
breast, lung adenocarcinoma, ACC, hepatocellular carci-
noma (HCC), gastric, pancreatic, and neuroblastoma (Fu-
jimoto et al., 2012; Ho et al., 2013; Sausen et al., 2013; Wu
and Roberts, 2013; Zang et al., 2012). Interestingly, the
majority of mutations are heterozygous, truncating, and
evenly spread along the protein, suggesting a possible role
as a haploinsufficient tumor suppressor. Functional studies
have confirmed this, noting increased proliferation and col-
ony formation, impaired differentiation, and decreased
apoptosis following partial ARID1A knockdown (Gao et al.,
2008; Luo et al., 2008; Nagl et al., 2007; Zang et al., 2012).
Correspondingly, re-expression of ARID1A decreases cell
proliferation (Zang et al., 2012). In addition, a role in differ-
entiation seems likely, though conflicting data on the specific
consequences of ARID1A inactivation has been complicated
through varying technical approaches and model systems
(Wu and Roberts, 2013).

Little is currently known about how ARID1A inactivation
leads to malignant transformation through SWI/SNF chro-
matin remodeling, though several intriguing possibilities
exist. Both ARID1A and ARID1B provide unique and mutu-
ally exclusive specificities for SWI/SNF recruitment to chro-
matin (Wilson and Roberts, 2011). Interestingly, with
ARID1A, this process is at least partially independent of its
ARID domain, which binds DNA in a non-specific manner
only (Dallas et al., 2000). Instead, ARID1A likely contributes
to specific recruitment of SWI/SNF by binding transcription
factors and transcriptional coactivator/corepressor com-
plexes, including nuclear hormone receptors (Nie et al.,
2000; Trotter and Archer, 2004). In fact, Inoue and col-
leagues showed that re-expression of ARID1A in a breast
cancer cell line augments transcriptional activation through
glucocorticoid receptors, estrogen receptor, and androgen
receptor (Inoue et al., 2002). This specificity is likely due to
the presence of several nuclear hormone receptor binding
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sites near the C-terminus of ARID1A (Nie et al., 2000). In
light of this, the impressive prevalence of ARID1A mutations
in hormone-responsive neoplasms (ovary, breast) is likely to
be more than just coincidence.

The clinical utility of ARID1A mutation status is currently
unclear, due to a limited number of sufficiently powered
studies. However, Sausen and colleagues recently found
that ARID1A or ARID1B mutations associate with worse OS
in patients with neuroblastoma, and a previous breast cancer
study noted that decreased ARID1A expression can confer
worse prognosis (Mamo et al., 2012; Sausen et al., 2013).
Several other intriguing observations have been noted,
including a tendency toward co-occurrence between muta-
tions in ARID1A and CTNNB1 (β-catenin) or PI3K-Akt
pathway alterations, as well as a mutual exclusivity between
ARID1A and TP53 mutations (Bosse et al., 2013). Whether
ARID1A-associated phenotypes arise through additional
epigenetic means, such as reported binding partners
HDAC1/2, its ubiquitin ligase activity at H2B K120, or by
increased MSI, remains to be determined (Bosse et al.,
2013; Li et al., 2010).

Mutations in other ARID family members ARID1B and
ARID2 have now been reported, though investigation into
their clinical and functional relevance is in its infancy.
ARID1B mutations occur at moderate frequency in neuro-
blastoma (7%) and HCC (6.7%), with sporadic mutations
identified in breast, gastric, and pancreatic cancers too
(Fujimoto et al., 2012; Sausen et al., 2013; Shain et al.,
2012; Wang et al., 2011). These mutations are usually
frameshift and hemizygous, suggesting it may be a tumor
suppressor, like ARID1A. More intriguing has been the dis-
covery of ARID2 mutations in HCC (5.8%–6.5%), with strong
enrichment in HCV-associated HCC (14%) (Fujimoto et al.,
2012; Zhao et al., 2011). ARID2 seems to mediate anti-
proliferative signaling by binding to IFN-inducible promoters
to remodel chromatin in response to interferon signaling. As
such, mutations in ARID2 may render IFN-related immune
processes incapacitated in the setting of HCV infection,
leading to accelerated tumorigenesis. More recently, muta-
tions in ARID2 were identified in NSCLC (7.3%), making this
gene one of the most frequently mutated in this type of
cancer (Manceau et al., 2013).

SMARCs

SWI/SNF-related matrix-associated actin-dependent regu-
lator of chromatin (SMARC) genes, also known as BRG1-
associated factors, are among the most frequently altered
and best characterized chromatin remodelers in cancer.
These genes encode several SWI/SNF proteins including
the catalytic ATPase subunits (either SMARCA2 or SMAR-
CA4), a group of conserved core subunits (e.g. SMARCB1,
SMARCC1, and SMARCC2), and variant subunits (e.g.
SMARCE1) (Wilson and Roberts, 2011). Tumor-specific
mutations in the following SMARCs are especially common:

SMARCB1/SNF5, SMARCA2/BRM, and SMARCA4/BRG1
(Shain et al., 2012). Alterations in these critical chromatin
remodelers have profound effects on vital processes, such
as differentiation, cell proliferation, and metastasis.

SMARCB1 is inactivated via biallelic alterations—deletion
and mutation (truncating, missense)—in nearly all rhabdoid
tumors (RTs; 98%), an especially lethal cancer that pre-
dominantly affects young children (Sievert et al., 2009; Ver-
steege et al., 1998). Recent exomic sequencing data has
identified mutations in other tumors and pre-malignant
lesions, such as sarcoma, gastric carcinoma, schwanno-
matosis, meningioma, chordoma, and hepatoblastoma
(Christiaans et al., 2011; Hulsebos et al., 2007; Kim et al.,
2013; Kreiger et al., 2009; Mobley et al., 2010; Trobaugh-
Lotrario et al., 2009). Mouse models for SMARCB1 loss
have verified a tumor suppressive role for this protein, with
homozygous loss leading to frequent formation of lympho-
mas and RT-like tumors at only 11 weeks, which is notably
faster than TP53-inactivated models of sarcoma (Guidi et al.,
2001; Roberts et al., 2000; Wilson and Roberts, 2011).
Interestingly, SMARCB1-deleted mice do not develop tumors
in the absence of SWI/SNF ATPase SMARCA4 (Wang et al.,
2009b), suggesting that oncogenesis following SMARCB1
inactivation is due to aberrant residual activity of SMARCA4-
containing SWI/SNF complexes. Additionally, global gains of
H3K27me3 following loss of SMARCB1 may directly con-
tribute to tumorigenesis, as simultaneous EZH2 loss protects
against transformation. In fact, EZH2 elevation occurs
immediately following SMARCAB1 inactivation, and re-
expression of SMARCB1 evicts PcG proteins from the
CDKN2A tumor suppressor locus, activating transcription of
this important tumor suppressor (Kia et al., 2008; Wilson
et al., 2010). This evidence provides both a necessary
mechanism and a possible therapeutic target (EZH2) in
SMARCB1-inactivated tumors.

Further mechanistic insights have yielded many other
potential therapeutic avenues in SMARCB1-mutated tumors.
For example, SMARCB1 plays a critical role in cell cycle
control. Mouse models have shown that coinactivation with
Rb or p16 does not accelerate tumorigenesis, and simulta-
neous loss of cyclin D1 protects against tumor formation
(Isakoff et al., 2005; Oruetxebarria et al., 2004; Tsikitis et al.,
2005). In this vein, cyclin D1 inhibitors may have surprising
effectiveness in these patients. Furthermore, direct binding
to Myc has also been reported, along with increased Myc
expression following SMARCB1 loss (Cheng et al., 1999;
Tsikitis et al., 2005). Though the efficacy of synthetic lethal
approaches in targeting Myc-driven tumorigenesis has yet to
be established, these strategies may be worthwhile thera-
peutic candidates. In addition to cell cycle dysregulation,
SMARCB1 inactivation leads to alterations in cell differenti-
ation, specifically by increasing hedgehog signaling through
the transcription factor Gli1 (Jagani et al., 2010). Thus,
inhibitors of Gli1 provide a fourth potential target for therapy
in SMARCB1-inactivated tumors. Lastly, increased RHOA
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activity and subsequent cell migration was observed fol-
lowing knockdown of SMARCB1, though therapeutic possi-
bilities of this mechanism remain unexplored (Caramel et al.,
2008).

SMARCA4, one of two SWI/SNF ATPase subunits, was
first identified as a potential tumor suppressor in NSCLC,
where expression is lost in 15%–50% of all tumors (Fukuoka
et al., 2004; Reisman et al., 2003). SMARCA4 mutations
have also been noted in 35% of NSCLC cell lines, as well as
in medulloblastoma, Burkitt lymphoma, melanoma, HCC,
ccRCC, HNSCC, RT, pancreatic, breast, and prostate can-
cer (Cancer Genome Atlas Research Network, 2013; Endo
et al., 2013; Love et al., 2012; Medina et al., 2008; Oike
et al., 2013; Shain and Pollack, 2013). The majority of
mutations and deletions are homozygous, though loss of
only one allele may be sufficient to drive tumorigenesis. For
instance, 10% of mice heterozygous for SMARCA4 develop
mammary tumors without spontaneous loss of the second
allele (Bultman et al., 2000; Bultman et al., 2008). Functional
studies have so far identified dual roles for SMARCA4 in
both differentiation and cell adhesion/migration. In embry-
onic stem cells (ESCs), inactivation of SMARCA4 leads to
defective self-renewal and promotes differentiation, while
overexpression enhances the epigenetic reprogramming of
fibroblasts into induced pluripotent stem (iPS) cells, possibly
through increased OCT4 binding to target genes (Singhal
et al., 2010). In addition, SMARCA4 has been shown to
promote osteoblast differentiation (Flowers et al., 2009).
Alternatively, SMARCA4 overexpression in cervical cancer
cell lines leads to increased ROCK1 and stress fiber for-
mation, which is reversible upon SMARCA4 knockdown
(Asp et al., 2002). Through this latter mechanism, SMAR-
CA4 may serve to modulate cell migration and reduce the
potential for invasion.

SMARCA2, the other ATPase subunit of the SWI/SNF
complex, is also a bona fide tumor suppressor with frequent
loss of expression via epigenetic silencing and more
recently, mutational inactivation (Oike et al., 2013). Mouse
models have shown that SMARCA2 deficiency results in
proliferative abnormalities, including increased overall
weight and tissue-specific increased growth (Reyes et al.,
1998). These mice exhibit increased cell proliferation in the
prostate as well as androgen independence (Shen et al.,
2008). In a similar lung model, heterozygous or homozygous
loss of SMARCA2 led to increased tumor formation (Glaros
et al., 2007). Other studies have proposed another mecha-
nism for enhanced tumorigenicity following SMARCA2 or
SMARCA4 loss, specifically through the induction of an
epithelial-mesenchymal transition (EMT) phenotype via the
transcription factor ZEB1 (Matsubara et al., 2013; Sanchez-
Tillo et al., 2010). Clinically, SMARCA2 inactivation may
predict poor prognosis, as loss of expression in both NSCLC
and HCC correlates with worse OS (Endo et al., 2013; Fu-
kuoka et al., 2004; Reisman et al., 2003). Recently, we
identified somatic nonsynonymous mutations in SMARCA2

(5%) following whole-exome and whole-genome sequencing
of 60 patients with ACC (Ho et al., 2013). All of these
mutations were located in a region encoding the Helicase C
domain, which is involved in regulating gene transcription.
Other SMARCA2 mutations have also been reported in
another cohort of patients with melanoma (Nikolaev et al.,
2012). Despite epigenetic silencing being the dominant
mechanism for SMARCA2 inactivation, specific mutations
may also prove important in the pathogenesis of certain
cancers.

PBRM1

Mutations in chromatin state regulators are very common in
ccRCC, with PBRM1/BAF180 mutations noted in 29%–41%
of all ccRCCs (Hakimi et al., 2013a; Varela et al., 2011). In
fact, the only gene altered more frequently in this malignancy
is VHL, a well-characterized driver of these cancers. In
addition, lower frequency mutation of PBRM1 has also been
described in many other neoplasms, including DLBCL,
HNSCC, chronic lymphoid leukemia (CLL), gastric, pancre-
atic, and breast cancer (Shain and Pollack, 2013; Xia et al.,
2008). Many of these mutations are truncating—frameshift
and nonsense—though a sizable number are also missense,
evenly distributed across the protein (Hakimi et al., 2013a). It
is most likely that these mutations are inactivating, as loss of
PBRM1 expression and gene deletion are noted in several
cancers and cell lines (Wang et al., 2012). Further, functional
studies have shown that re-expression of PBRM1 in
PBRM1-deficient cells induces cell growth arrest in G1

phase, specifically through binding of the CDKN1A promoter,
leading to induction of p21 (Xia et al., 2008). PBRM1 con-
tains six tandem bromodomains that bind acetylated histone,
two BAH domains that mediate protein-protein interactions,
and a HMG domain to bind nucleosomal DNA, all of which
provide functional specificity to SWI/SNF remodelers (Wil-
son and Roberts, 2011).

Exactly how these mutations affect epigenetic reprogram-
ming has yet to be determined, though they are likely pleio-
tropic, diverse, and dependent on location and type of
mutation. It is clear thatPBRM1 inactivation does have clinical
consequences, at least in ccRCC. For example, PBRM1
mutations have been shown to correlate to worse clinical
outcomes (Pawlowski et al., 2013). Also, patientswithPBRM1
inactivation are more likely to present with stage III or IV dis-
ease, increased tumor size, low differentiation grade,
increased perinephric or lymphatic invasion, and are less
likely to have an “incidentaloma” at diagnosis (da Costa et al.,
2013; Hakimi et al., 2013a; Pawlowski et al., 2013). In addi-
tion, smaller tumors (<4 cm) with PBRM1mutations are more
likely to exhibit stage II pathologic features. Most interestingly,
PBRM1 and BAP1 mutations are mutually exclusive in
ccRCC, and in a side-by-side comparison, PBRM1 mutation
correlates with improved OS over BAP1 alterations (Kapur
et al., 2013; Pena-Llopis et al., 2013).
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BRD7

BRD7 is a PBAF-specific chromatin remodeler that is fre-
quently deleted in breast cancer. Recently, low frequency
mutations in this gene have been identified in several can-
cers (Cerami et al., 2012; Forbes et al., 2011). For some
time, BRD7 was believed to be an important SWI/SNF tumor
suppressor that functions mainly as a cofactor for p53 to
activate oncogene-induced senescence (OIS) (Burrows
et al., 2010). In fact, BRD7 was first identified in a loss-of-
function screen for genes required for p53-dependent OIS.
Drost and colleagues showed that p53 required BRD7 for
OIS—and vice versa—and that p53 directly interacts with the
N-terminus of BRD7, upstream of its bromodomain. Fur-
thermore, BRD7 was required for induction of several p53
target genes, including CDKN1A and MDM2, and was
capable of direct binding to their associated promoters
(Drost et al., 2010). This mechanism likely explains the
reported ability of BRD7 to inhibit cell cycle progression from
G1 to S phase, though direct binding at the E2F3 promoter
may also facilitate this (Peng et al., 2006).

Though this mechanism is likely important in certain
cancers, the diversity of BRD7 phenotypes may be depen-
dent on the unique molecular architecture found within dif-
ferent tissues. For example, a recent study focusing on
epithelial ovarian carcinoma showed that BRD7 can act as a
tumor suppressor independent of p53 activity, possibly by
sequestering β-catenin in the cytoplasm. These data were
further supported by a β-catenin responsive TCF-reporter
assay in vitro and the presence of decreased BRD7
expression in high-grade epithelial ovarian serous carci-
noma clinical specimens (Bae et al., 2013). Regardless of
the mechanism, overexpression of BRD7 has powerful
tumor suppressive effects in cancer cell lines, resulting in
decreased cell viability and reduced invasion/migration,
independent of p53 status. Lastly, BRD7 may also influence
covalent histone modifications themselves, with knockdown
resulting in decreased acetylation at H3K9 and direct binding
observed in vitro at histone residue H3K14 (Bae et al., 2013;
Peng et al., 2006). Future studies are necessary to deter-
mine which mutations have functional consequences and
whether any associated therapeutic vulnerabilities can be
exploited.

HISTONES

An exciting development in the past few years has been the
identification of recurrent mutations in genes encoding the
histones themselves. Histone mutations in cancer were first
discovered following massive exomic sequencing efforts in
colon cancer (HIST1H1B, 4%) and NHL (HIST1H1C, 7%),
though frequencies were low and no recurrent mutations were
identified (Morin et al., 2011; Sjoblom et al., 2006). However, a
recent pair of pediatric glioma studies revealed highly recur-
rent heterozygous mutations inHIST1H3B andH3F3A, which

encode histonesH3.1 andH3.3, respectively. Collectively,Wu
et al. and Schwartzentruber et al. reported common H3F3A
mutations in diffuse intrinsic pontine glioma (DIPG; 78%) and
pediatric GBM (22%–31%), withHIST1H3Bmutations almost
exclusive to DIPG (18%). Most striking is the location of these
mutations at amino acid residues K27M and G34 (G/R, G/V),
which are at or near critical sites for post-translational modi-
fication viamethylation and acetylation on the histone tail (e.g.
H3K27, H3K36) (Schwartzentruber et al., 2012; Wu et al.,
2012). This observation, alongwith themutually exclusive and
monoallelic nature of the K27 and G34 mutations, led to
subsequent investigations into the clinical and biologic con-
sequences of these potentially gain-of-function mutations.

Currently, K27M and G34R/V mutations have been found
almost exclusively in pediatric HGGs, including CNS-PNET
(11%, G34R), though sporadic mutations at these residues
have been recently noted in osteosarcoma (G34W) and
MDS (K27N) (Attieh et al., 2013; Gessi et al., 2013; Joseph
et al., 2013). In fact, the remarkable prevalence of these
mutations in pediatric HGGs has enabled a thorough
examination into the clinical significance of these events. For
example, despite the mutually exclusive nature of K27M and
G34 mutations, which implies a common pathway or bio-
logical process, there are important differences. First, sev-
eral studies have noted that the K27M mutation predicts both
younger age and worse OS as compared to G34 and wild-
type H3.3 (Chan et al., 2013a; Khuong-Quang et al., 2012;
Sturm et al., 2012). In one study, G34 mutations were
actually associated with improved OS when compared to
wild-type H3.3 (Sturm et al., 2012). Second, H3F3A muta-
tions are frequently exclusive with IDH1 mutations and
commonly co-occur with ATRX/DAXX, PDGFRA, and TP53
alterations, especially in G34 mutant tumors (Schwartzentr-
uber et al., 2012; Sturm et al., 2012). Overlap between
alterations in H3F3A and ATRX/DAXX is particularly inter-
esting, since both have been linked to increased CNVs and
alternative lengthening of telomeres (ALT) in tumor speci-
mens (Yuen and Knoepfler, 2013). Third, H3F3A mutations
predict tumor anatomic location—K27M and G34 mutant
GBMs occur in midline and hemispheric areas of the brain,
respectively (Chan et al., 2013a; Schwartzentruber et al.,
2012). Likewise, a groundbreaking study by Sturm and col-
leagues revealed distinct epigenetic subtypes of GBM, with
K27 and G34 mutant tumor samples exhibiting independent
gene expression and methylation profiles (Bjerke et al.,
2013; Schwartzentruber et al., 2012; Sturm et al., 2012).
Interestingly, these profiles may also explain the anatomic
preferences; the G34 mutant transcriptomic signature
resembles embryonic regions of the neocortex and striatum,
whereas the K27M signature is more similar to embryonic
regions of the striatum and thalamus. Lastly, these epige-
netic signatures harbor important differences in marker
genes, with DNA hypermethylation and associated silencing
at FOXG1 (K27M), MICA (K27M), or OLIG1/2 (G34) and
elevated expression of PDGFRA (K27M) (Bender et al.,
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2013; Sturm et al., 2012). Collectively, these changes in the
methylome and transcriptome define the different H3.3
mutant GBM subtypes, correlate to anatomic tumor loca-
tions, and indicate potentially different cell origins or initiation
events in tumorigenesis. Further, they provide mechanistic
insight into H3F3A-induced oncogenesis.

Global DNA hypomethylation and decreases in genome-
wide histone methylation suggest that mutant H3.3 functions
in a dominant-negative manner (Bender et al., 2013; Chan
et al., 2013a; Lewis et al., 2013; Sturm et al., 2012). Several
groups have now shown that K27M mutant patient samples
and cell lines exhibit globally reduced H3K27 di-/tri-methyl-
ation and at many loci, DNA hypomethylation (Bender et al.,
2013; Chan et al., 2013a; Lewis et al., 2013). Further, forced
overexpression of H3.3 K27M in isogenic GBM cells, 293T
cells, and MEFs causes reduced H3K27me2/me3 (but not
changes in monomethylation) as well as modest increases in
H3K27ac, two features of transcriptionally active chromatin
(Bender et al., 2013; Chan et al., 2013b). The major

mechanism for loss of histone di-/tri-methylation is K27M-
mediated inhibition of the PRC2 complex through direct
binding of KMT EZH2 at the catalytic site, as well as binding
to PRC2 cofactor SUZ12 (Bender et al., 2013; Chan et al.,
2013a; Lewis et al., 2013). In fact, in vitro KMT assays
revealed that K27M reduces KMT activity by 40%–70% and
EZH2 catalytic activity up to 85%, with no loss of PRC2-
associated KDM activity (e.g KDM6A/B) (Bender et al.,
2013). Somewhat contradictory to this finding, ChIP-seq has
revealed that hundreds of gene loci are also enriched for
H3K27me3 and EZH2 in K27M mutant tumors or following
overexpression of K27M, and analysis of differential
expression shows increased gene transcription at these loci
(Bender et al., 2013; Bjerke et al., 2013; Chan et al., 2013a).
The mechanism underlying these paradoxical changes in
H3K27 methylation and associated transcription changes is
currently unknown (Chan et al., 2013b).

In contrast to the K27M mutation, broad changes in DNA
methylation and histone marks underlying G34R/V induced
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Figure 2. Frequently mutated epigenetic regulators in human cancer. Select oncogenes and tumor suppressors implicated in

altered cancer epigenomes are shown, along with mutation frequency by tumor histology. *Role in oncogenesis (oncogene vs. tumor

suppressor) is either mixed or undetermined.
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tumorigenesis are less clear. Further, though investigators
have shown that G34R/V mutations disrupt methylation at
nearby amino acid residue K36, our understanding of the
mechanisms leading to malignant transformation is limited.
Despite this, analysis of differential gene expression between
H3.3 G34R/V mutant and wild-type tumors has already

identified some interesting markers (e.g. OLIG1/2), as stated
above. As such, the defining feature of H3.3 mutant tumors is
the aberrant activation and repression of numerous genes that
uniquely contribute to oncogenesis. Understanding the con-
stellation of changes unique to H3.3 mutants should allow
identification of additional subtypes and driver genes. Most
exciting is the recent identification of G34-induced activation
of MYCN in pediatric GBM cell line KNS42 (Bjerke et al.,
2013). This well-characterized oncogene is potentially drug-
gable through synthetic lethal means, via aurora kinase A
(AURKA), or JQ1 inhibition (Huang and Weiss, 2013).
Implementing this strategy in patients harboring H3F3A G34
mutations could have immense therapeutic benefit. Similarly,
identifying and characterizing other differentially expressed
genes in H3F3A mutant pediatric gliomas could present new
ways of treating this very difficult disease.

SUMMARY AND PERSPECTIVES

Understanding the role of altered epigenetic states has long
been a fundamental goal in cancer research. It is now well-
documented that distinct chromatin states are both neces-
sary and sufficient to drive tumor formation, sustain
increased cellular growth, and encourage metastatic dis-
semination (Baylin et al., 2001; Jones and Baylin, 2002).
However, the link between classical genetics and cancer
epigenomics has only recently been explored. In recent
years, a plethora of mutations have been discovered in
chromatin modifier genes. Studies now show that these
alterations have profound effects on the cancer epigenome,
leading to potent oncogenic transcriptional programs.

It hasbecomeabundantly clear thatmutations in epigenetic
modifiers are both incredibly diverse and ubiquitous in cancer.
In fact, sequencing data has revealed that mutations exist in
genes involved in nearly all aspects of epigenetics, including
DNA methylation, covalent histone modification, and chro-
matin remodeling (Fig. 2). Several neoplasms rely on few, yet
powerful, mutations in select genes to drive tumorigenesis
through an altered epigenome, at least in part (e.g. IDH1/2 in
LGG, MLL2 in FL, SMARCB1 in RT). Remarkably, some
cancers have such a wide range and high prevalence of
alterations in chromatin modifiers (ACC, ccRCC, TCC) that
they may be driven primarily through epigenetic means.
Interestingly, mutations in regulators of DNAmethylation have
a strong cancer-specific prevalence (glioma, leukemia),
whereas genetic alterations in histonemodifiers (e.g.KDM6A)
arewidespread acrossmany cancers, though the significance
of this is incompletely understood.

Although the field of epigenomics in cancer is relatively
new, the identification of driver mutations in epigenetic regu-
lator genes has already led to new prognostic and therapeutic
advances. New subtypes of cancer have been identified, or at
least attributed to previously unknown genetic alterations,
allowing a more nuanced approach to treatment. Further,
several new targeted therapies are currently in development

Table 1. Selected inhibitors of epigenetic regulators

Substance Target Highest clinical
status

5-Azacytidine DNMT Approved

Decitabine DNMT Approved

SGI-110 DNMT Phase I/II

MG98 DNMT Phase I

RG108 DNMT Preclinical

SGI-1027 DNMT Preclinical

Zebularine DNMT Preclinical

EPZ-6438 EZH2 Phase I/II

GSK126 EZH2 Preclinical

GSK343 EZH2 Preclinical

EI1 EZH2 Preclinical

EPZ005687 EZH2 Preclinical

UNC1999 EZH2 Preclinical

Pivanex HDAC Phase I/II

Romidepsin HDAC (class I) Approved

Vorinostat HDAC (pan) Approved

Panobinostat HDAC (class I/II) Phase III

Abexinostat HDAC (class I/II) Phase II

Belinostat HDAC (pan) Phase II

Butyrate HDAC (class I/IIa) Phase II

Entinostat HDAC (class I) Phase II

Givinostat HDAC (pan) Phase II

Mocetinostat HDAC (class I) Phase II

Resminostat HDAC (pan) Phase II

SB939 HDAC (pan) Phase II

Valproate HDAC (class I/IIa) Phase II

ACY-1215 HDAC6 Phase I/II

PCI-24781 HDAC (class I/II) Phase I/II

CUDC-101 HDAC (class I/II) Phase Ib

4SC-202 HDAC (class I) Phase I

AR-42 HDAC (class I/II) Phase I

CG200745 HDAC (pan) Phase I

Tranylcypromine KDM1A/LSD1 Phase II

ORY-1001 KDM1A/LSD1 Preclinical

AGI-5198 Mutant IDH1 Preclinical

AGI-6780 Mutant IDH2 Preclinical
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and show great promise at reversing phenotypes caused by
activating mutations in certain genes (e.g. IDH1, EZH2). In
addition, understanding the epigenetic mechanisms that
underlie these alterations has also provided new therapeutic
potential, even if the driver mutations cannot be targeted
directly (e.g. HDACi, DNMT inhibitors) (Table 1) (Arrowsmith
et al., 2012; Foulks et al., 2012; Helin and Dhanak, 2013; New
et al., 2012; Plass et al., 2013).

There is nodoubt thatweare in themidst of an excitingera in
both cancer genomics and epigenetics. Investigations focused
on the intersectionof these twofieldshaveprovided remarkable
clarity into numerous aspects of cancer biology and novel
mechanisms of oncogenesis. Already, great strides have been
made to translate these early discoveries into clinical practice,
and the characterization of novel mutations in chromatin mod-
ifier genes is rapidly accelerating. With the ongoing develop-
ment of new epigenetic therapies, it is possible that much
improved outcomes, at least in certain cancers, may be pos-
sible in the near future. Further, an enhanced understanding of
the epigenomic alterations associated with these driver gene
mutations could lead to the discovery of novel pathways
involved in tumorigenesis, which may themselves possess
unique vulnerabilities for therapeutic intervention.
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