128 research outputs found
Berry Curvature and Bulk-Boundary Correspondence from Transport Measurement for Photonic Chern Bands
Berry curvature is a fundamental element to characterize topological quantum
physics, while a full measurement of Berry curvature in momentum space was not
reported for topological states. Here we achieve two-dimensional Berry
curvature reconstruction in a photonic quantum anomalous Hall system via Hall
transport measurement of a momentum-resolved wave packet. Integrating measured
Berry curvature over the two-dimensional Brillouin zone, we obtain Chern
numbers corresponding to -1 and 0. Further, we identify bulk-boundary
correspondence by measuring topology-linked chiral edge states at the boundary.
The full topological characterization of photonic Chern bands from Berry
curvature, Chern number, and edge transport measurements enables our photonic
system to serve as a versatile platform for further in-depth study of novel
topological physics
Decision Support System for the Response to Infectious Disease Emergencies Based on WebGIS and Mobile Services in China
Background: For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Methodology/Principal Findings: Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. Conclusions/Significance: The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts
Solution-processed blue/deep blue and white phosphorescent organic light emitting diodes (PhOLEDs) hosted by a polysiloxane derivative with pendant mCP (1, 3-bis(9-carbazolyl)benzene)
The synthesis and characterization is reported of an efficient polysiloxane derivative containing the 1,3-bis(9-carbazolyl)benzene (mCP) moiety as a pendant unit on the polysiloxane backbone. In comparison with mCP, the mCP-polysiloxane hybrid (PmCPSi) has significantly improved thermal and morphological stabilities with a high decomposition temperature (Td = 523 °C) and glass transition temperature (Tg = 194 °C). The siliconâoxygen linkage of PmCPSi prevents intermolecular Ï-stacking and ensures a high triplet energy level (ET = 3.0 eV). Using PmCPSi as a host, blue phosphorescent organic light emitting devices (PhOLEDs) effectively confine triplet excitons, with efficient energy transfer to the guest emitter and a relatively low turn-on voltage of 5.8 V. A maximum external quantum efficiency of 9.24% and maximum current efficiency of 18.93 cd/A are obtained. These values are higher than for directly analogous poly(vinylcarbazole) (PVK) based devices (6.76%, 12.29 cd/A). Good color stability over a range of operating voltages is observed. A two-component âwarm-whiteâ device with a maximum current efficiency of 10.4 cd/A is obtained using a blend of blue and orange phosphorescent emitters as dopants in PmCPSi host. These results demonstrate that well-designed polysiloxane derivatives are highly efficient hosts suitable for low-cost solution-processed PhOLEDs
Joint Effects of Febrile Acute Infection and an Interferon-Îł Polymorphism on Breast Cancer Risk
BACKGROUND: There is an inverse relationship between febrile infection and the risk of malignancies. Interferon gamma (IFN-Îł) plays an important role in fever induction and its expression increases with incubation at fever-range temperatures. Therefore, the genetic polymorphism of IFN-Îł may modify the association of febrile infection with breast cancer risk. METHODOLOGY AND PRINCIPAL FINDINGS: Information on potential breast cancer risk factors, history of fever during the last 10 years, and blood specimens were collected from 839 incident breast cancer cases and 863 age-matched controls between October 2008 and June 2010 in Guangzhou, China. IFN-Îł (rs2069705) was genotyped using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using multivariate logistic regression. We found that women who had experienced â„1 fever per year had a decreased risk of breast cancer [ORs and 95% CI: 0.77 (0.61-0.99)] compared to those with less than one fever a year. This association only occurred in women with CT/TT genotypes [0.54 (0.37-0.77)] but not in those with the CC genotype [1.09 (0.77-1.55)]. The association of IFN-Îł rs2069705 with the risk of breast cancer was not significant among all participants, while the CT/TT genotypes were significantly related to an elevated risk of breast cancer [1.32 (1.03-1.70)] among the women with <1 fever per year and to a reduced risk of breast cancer [0.63 (0.40-0.99)] among women with â„1 fever per year compared to the CC genotype. A marked interaction between fever frequencies and the IFN-Îł genotypes was observed (P for multiplicative and additive interactions were 0.005 and 0.058, respectively). CONCLUSIONS: Our findings indicate a possible link between febrile acute infection and a decreased risk of breast cancer, and this association was modified by IFN-Îł rs2069705
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Cell Proliferation, Movement and Differentiation during Maintenance of the Adult Mouse Adrenal Cortex
Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2'-deoxyuridine (BrdU) labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 ”m per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH) treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- âŠ