14 research outputs found

    Neutral Gauge Boson Contributions to the Dimuon Charge Asymmetry in B Decays

    Full text link
    Recently, the D0 Collaboration measured the CP-violating like-sign dimuon charge asymmetry in neutral B decays, finding a 3.2sigma difference from the standard-model (SM) prediction. A non-SM charge asymmetry a_sl^s suggests a new-physics (NP) contribution to Bs-Bsbar mixing. In this case, in order to explain the measured value of a_sl^s within its 1sigma range, NP must be present in Gamma_12^s, the absorptive part of the mixing. In this paper, we examine whether such an explanation is possible in models with flavor-changing Z (ZFCNC) or Z' (Z'FCNC) gauge bosons. The models must also reproduce the measured values of the indirect CP asymmetry S_psi-phi in Bs -> J/psi phi, and Delta Gamma_s, the Bs-Bsbar width difference. We find that the ZFCNC model cannot reproduce the present measured values of S_psi-phi and a_sl^s within their 1sigma ranges. On the other hand, in the Z'FCNC model, the values of all three observables can be simultaneously reproduced.Comment: 18 pages, 7 figures, JHEP format. Some ZFCNC equations corrected, ZFCNC analysis redone, references added, conclusions unchange

    Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner

    Get PDF
    The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.Comment: 20 pages, 5 figure

    Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario

    Get PDF
    In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Theory of neutrinos: a white paper

    No full text
    This paper is a review of the present status of neutrino mass physics, which grew out of an APS sponsored study of neutrinos in 2004. After a discussion of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, it summarizes what can be learned about neutrino interactions as well as the nature of new physics beyond the Standard Model from the various proposed neutrino experiments. The intriguing possibility that neutrino mass physics may be at the heart of our understanding of a long standing puzzle of cosmology, i.e. the origin of matter-antimatter asymmetry is also discussed
    corecore