38 research outputs found

    Expanding the clinical spectrum of biglycan-related Meester-Loeys syndrome

    Get PDF
    \ua9 The Author(s) 2024.Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5’ untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Fosdenopterin: First Approval

    No full text

    Chronic Diarrhea in L-Amino Acid Decarboxylase (AADC) Deficiency: A Prominent Clinical Finding Among a Series of Ten French Patients

    No full text
    International audienceAromatic L-amino acid decarboxylase (AADC) deficiency is an autosomal recessive inborn error of metabolism, affecting catecholamines and serotonin biosynthesis. Cardinal signs consist in psychomotor delay, hypotonia, oculogyric crises, dystonia, and extraneurological symptoms. PATIENTS AND METHODS: We present a retrospective descriptive multicentric study concerning ten French children with a biochemical and molecular confirmed diagnosis of AADC deficiency. RESULTS: Clinical presentation of most of our patients was consistent with the previous descriptions from the literature (hypotonia (nine children), autonomic signs (nine children), sleep disorders (eight children), oculogyric crises (eight children), motor disorders like hypertonia and involuntary movements (seven children)). We described however some phenotypic particularities. Two patients exhibited normal intellectual abilities (patients already described in the literature). We also underlined the importance of digestive symptoms like diarrhea, which occurred in five among the ten patients. We report in particular two children with chronic diarrhea, complicated by severe failure to thrive. Vanillactic acid (VLA) elevation in urines of one of these two patients led to suspect the diagnosis of AADC deficiency, as in two other patients from our population. CONCLUSION: Some symptoms like chronic diarrhea were atypical and have been poorly described in the literature up to now. Diagnosis of the AADC deficiency is sometimes difficult because of the phenotypic heterogeneity of the disease and VLA elevation in urines should suggest the diagnosis

    Analysis of VUS reporting, variant reinterpretation and recontact policies in clinical genomic sequencing consent forms

    No full text
    There are several key unsolved issues relating to the clinical use of next generation sequencing, such as: should laboratories report variants of uncertain significance (VUS) to clinicians and/or patients ? Should they reinterpret VUS in response to growing knowledge in the field ? And should patients be recontacted regarding such results ? We systematically analyzed 58 consent forms in English used in the diagnostic context to investigate their policies for (a) reporting VUS, (b) reinterpreting variants, including who should initiate this, and (c) recontacting patients and the mechanisms for undertaking any recontact. One-third (20/58) of the forms did not mention VUS in any way. Of the 38 forms that mentioned VUS, only half provided some description of what a VUS is. Approximately one-third of forms explicitly stated that reinterpretation of variants for clinical purposes may occur. Less than half mentioned recontact for clinical purposes, with variation as to whether laboratories, patients, or clinicians should initiate this. We suggest that the variability in variant reporting, reinterpretation, and recontact policies and practices revealed by our analysis may lead to diffused responsibility, which could result in missed opportunities for patients or family members to receive a diagnosis in response to updated variant classifications. Finally, we provide some suggestions for ethically appropriate inclusion of policies for reporting VUS, reinterpretation, and recontact on consent forms.SIENNA project - Stakeholder-informed ethics for new technologies with high socio-economic and human rights impac
    corecore