8 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Motorboat noise disrupts co-operative interspecific interactions

    Get PDF
    Human-made noise is contributing increasingly to ocean soundscapes. Its physical, physiological and behavioural effects on marine organisms are potentially widespread, but our understanding remains largely limited to intraspecific impacts. Here, we examine how motorboats affect an interspecific cleaning mutualism critical for coral reef fish health, abundance and diversity. We conducted in situ observations of cleaning interactions between bluestreak cleaner wrasses (Labroides dimidiatus) and their fish clients before, during and after repeated, standardised approaches with motorboats. Cleaners inspected clients for longer and were significantly less cooperative during exposure to boat noise, and while motorboat disturbance appeared to have little effect on client behaviour, as evidenced by consistency of visit rates, clientele composition, and use of cleaning incitation signals, clients did not retaliate as expected (i.e., by chasing) in response to increased cheating by cleaners. Our results are consistent with the idea of cognitive impairments due to distraction by both parties. Alternatively, cleaners might be taking advantage of distracted clients to reduce their service quality. To more fully understand the importance of these findings for conservation and management, further studies should elucidate whether the efficacy of ectoparasite removal by cleaners is affected and explore the potential for habituation to boat noise in busy areas

    Vibrational communication networks: eavesdropping and biotic noise

    No full text
    In nature, communication predominantly occurs in a group of several conspecific and/or heterospecific individuals within signaling and receiving range of each other, i.e., in a network environment. Vibrational communication in the context of sexual behavior has been, in the past, usually considered as a private communication channel, free of potential competitors and eavesdropping predators or parasitoids and consequently only rarely studied outside an emitter–receiver dyad. We provide an overview of work related to vibrational communication in the presence of (a) environmental (abiotic) noise, (b) other conspecific and/or heterospecific signalers (biotic noise), (c) rivals and (d) exploiters (predators and parasitoids) The evidence gathered in the last few years shows that arthropods relying on substrate-borne vibrations communicate within a rich and complex vibrational world and reveals diverse interactions and mechanisms. Considering vibrational communication from a network perspective may allow us in the future to identify sources of selection pressures that cannot be recognized in a communication dya

    Vibrational communication networks

    Full text link
    In nature, communication predominantly occurs in a group of several conspecific and/or heterospecific individuals within signaling and receiving range of each other, i.e., in a network environment. Vibrational communication in the context of sexual behavior has been, in the past, usually considered as a private communication channel, free of potential competitors and eavesdropping predators or parasitoids and consequently only rarely studied outside an emitter–receiver dyad. We provide an overview of work related to vibrational communication in the presence of (a) environmental (abiotic) noise, (b) other conspecific and/or heterospecific signalers (biotic noise), (c) rivals and (d) exploiters (predators and parasitoids). The evidence gathered in the last few years shows that arthropods relying on substrate-borne vibrations communicate within a rich and complex vibrational world and reveals diverse interactions and mechanisms. Considering vibrational communication from a network perspective may allow us in the future to identify sources of selection pressures that cannot be recognized in a communication dyad
    corecore