138 research outputs found

    Oscillations, metastability and phase transitions in brain and models of cognition

    Get PDF
    Neuroscience is being practiced in many different forms and at many different organizational levels of the Nervous System. Which of these levels and associated conceptual frameworks is most informative for elucidating the association of neural processes with processes of Cognition is an empirical question and subject to pragmatic validation. In this essay, I select the framework of Dynamic System Theory. Several investigators have applied in recent years tools and concepts of this theory to interpretation of observational data, and for designing neuronal models of cognitive functions. I will first trace the essentials of conceptual development and hypotheses separately for discerning observational tests and criteria for functional realism and conceptual plausibility of the alternatives they offer. I will then show that the statistical mechanics of phase transitions in brain activity, and some of its models, provides a new and possibly revealing perspective on brain events in cognition

    Metastability, Criticality and Phase Transitions in brain and its Models

    Get PDF
    This essay extends the previously deposited paper "Oscillations, Metastability and Phase Transitions" to incorporate the theory of Self-organizing Criticality. The twin concepts of Scaling and Universality of the theory of nonequilibrium phase transitions is applied to the role of reentrant activity in neural circuits of cerebral cortex and subcortical neural structures

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    stairs and fire

    Get PDF

    Framework for quality assessment of whole genome cancer sequences

    No full text
    Bringing together cancer genomes from different projects increases power and allows the investigation of pan-cancer, molecular mechanisms. However, working with whole genomes sequenced over several years in different sequencing centres requires a framework to compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Genomes cohort as a test case to construct such a framework. This cohort contains whole cancer genomes of 2832 donors from 18 sequencing centres. We developed a non-redundant set of five quality control (QC) measurements to establish a star rating system. These QC measures reflect known differences in sequencing protocol and provide a guide to downstream analyses and allow for exclusion of samples of poor quality. We have found that this is an effective framework of quality measures. The implementation of the framework is available at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2.</a

    Inflammation modulates fibronectin isoform expression in colonic lamina propria fibroblasts (CLPF)

    Full text link
    BACKGROUND: Migration of colonic lamina propria fibroblasts (CLPF) plays an important role during mucosal wound healing as well as fibrosis and fistula formation in Crohn's disease (CD). Recently, we showed that the migratory potential of CD-CLPF was significantly reduced compared to control CLPF. Fistula-derived CD-CLPF migrated less and fibrosis-CLPF more than CLPF from inflamed CD mucosa. These changes in migratory behavior were associated with changes in production of the migration-inducing fibronectin (FN) isoforms ED-A and ED-B. A permanent reduction of the migratory potential of CLPF was mediated by IFN-gamma and tumor necrosis factor (TNF) modulate FN isofom expression in CLPF and thereby might regulate CLPF migration. MATERIALS AND METHODS: Control CLPF were incubated for 72 h with IFN-gamma, TNF, IFN-gamma plus TNF, or TGF-beta1. Messenger RNA (mRNA) was isolated and expression of FN and isoforms ED-A and ED-B was quantified by real-time polymerase chain reaction. FN, ED-A, and ED-B were investigated by Western blotting. FN receptor integrin alpha5beta1 was analyzed by FACS. RESULTS: No difference was found for the surface display of integrin alpha5beta1 between stimulated and non-stimulated cells. In TGF-beta1 incubated CLPF mRNA amount of FN and isoforms ED-A and ED-B was slightly increased. IFN-gamma only decreased FN in CLPF, TNF significantly reduced FN-mRNA by 40%, FN ED-A mRNA by 25%, and ED-B mRNA by 50%. The TNF-mediated mRNA downregulation resulted in a decreased protein amount as revealed by Western blotting. CONCLUSION: Cytokines such as IFN-gamma, TNF, and TGF-beta1 modulate the production of fibronectin isoforms. Our data indicate that inflammation-induced modulation of FN-isoform production is involved in the alterations of migratory potential of CLPF isolated from CD mucosa

    Consciousness related neural events viewed as brain state space transitions

    No full text
    This theoretical and speculative essay addresses a categorical distinction between neural events of sensory-motor cognition and those presumably associated with consciousness. It proposes to view this distinction in the framework of the branch of Statistical Physics currently referred to as Modern Critical Theory (Stanley, Introduction to phase transitions and critical phenomena, 1987; Marro and Dickman, Nonequilibrium phase transitions in lattice, 1999). Based on established landmarks of brain dynamics, network configurations and their role for conveying oscillatory activity of certain frequencies bands, the question is examined: what kind of state space transitions can systems with these properties undergo, and could the relation between neural processes of sensory-motor cognition and those of events in consciousness be of the same category as is characterized by state transitions in non-equilibrium physical systems? Approaches for empirical validation of this view by suitably designed brain imaging studies, and for computational simulations of the proposed principle are discussed
    corecore