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Abstract		

Defining	 the	organizational	principles	of	neuronal	networks	at	 the	 cellular	 scale,	or	micro-
connectomics,	 is	 a	 key	 challenge	 of	modern	 neuroscience.	 Accelerated	 by	methodological	
advances,	recent	experimental	studies	have	generated	rich	data	on	anatomical,	physiological	
and	genetic	 factors	determining	the	organization	of	neuronal	networks.	 In	this	Review,	we	
will	 focus	on	graph	 theoretical	parameters	of	micro-connectome	topology,	often	 informed	
by	economical	principles	that	conceptually	originate	with	Ramón	y	Cajal’s	conservation	laws.	
First,	we	summarize	results	from	experimental	studies	in	intact	small	organisms	and	in	tissue	
samples	 from	 larger	 nervous	 systems.	We	 then	 evaluate	 the	 evidence	 for	 an	 economical	
trade-off	between	biological	cost	and	functional	value	in	the	organization	and	development	
of	neuronal	networks.	In	general,	the	wiring	cost	of	neuronal	networks	was	nearly,	but	not	
strictly,	 minimized	 by	 the	 spatial	 positioning	 and	 connectivity	 of	 neurons.	 Features	 that	
reduce	 the	 number	 of	 synaptic	 connections	 between	 neurons,	 such	 as	 hubs,	 were	 more	
expensive	 to	 wire	 than	 the	 theoretical	 minimum.	 It	 seems	 reasonable	 to	 infer	 from	
contemporary	 micro-connectomics	 that	 many	 aspects	 of	 intricately	 detailed	 neuronal	
network	 organization	 are	 indeed	 the	 outcome	 of	 competition	 between	 two	 fundamental	
selection	 pressures:	 low	 biological	 cost	 and	 high	 functional	 value.	 Future	 studies	 will	 be	
needed	to	clarify	which	aspects	of	network	topology	are	most	functionally	valuable	and	to	
identify	the	biological	mechanisms	controlling	expression	of	cost	and	topological	pressures	
on	the	development	and	evolution	of	micro-connectomes.		
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Introduction	
	
Ramón	 y	 Cajal	 proposed	 in	 1899	 that	 neuronal	 structure	 is	 the	 histological	 outcome	 of	
adaptations	 to	 ‘laws	 of	 conservation’	 for	 time,	 space	 and	 material1.	 According	 to	 this	
influential	hypothesis,	each	building	block	inherent	to	neuronal	networks,	ranging	from	the	
sub-cellular	composition	of	synaptic	vesicles	and	connectivity	between	single	cells	to	larger-
scale	 neuronal	 tracts	 between	brain	 regions,	 represents	 the	 result	 of	 a	 trade-off	 between	
the	costs	of	maintaining	it	and	the	evolutionary/functional	benefits	it	provides2,3.	More	than	
a	century	later,	the	quest	for	general	principles	underlying	nervous	system	organization	and	
neuronal	 information	 processing	 continues	 –	 remaining	 one	 of	 the	 greatest	 challenges	 of	
modern	neuroscience.	Micro-connectomics,	 the	graph	theoretical	analysis	of	organizational	
principles	 in	 neuronal	 connectivity	 at	 the	 cellular	 scale,	 has	 become	 a	 fruitful	 conceptual	
framework	in	this	endeavour4.		

In	 this	Review,	we	will	 survey	 recent	experimental	 evidence	on	 topological	 themes	
that	emerged	from	the	connectomic	study	of	small	neuronal	networks,	some	of	which	were	
reconstructed	 at	 the	 level	 of	 individual	 synapses	 and	 gap	 junctions.	 Considering	 the	
anatomical	 structure	 of	 these	 nervous	 systems,	 such	 as	 in	 the	 nematode	 worm	
Caenorhabditis	 elegans	 (C.	elegans)5,	 classic	 studies	have	provided	evidence	 that	neuronal	
networks	 express	 organizational	 motifs	 that	 may	 underlie	 elementary	 units	 of	 neuronal	
information	 processing	 and	 provide	 a	 structural	 architecture	 for	 flexible	 adaptation	 to	
environmental	 constraints6.	 It	 remains	 an	 open	 question,	 however,	 whether	 principles	
observed	 in	 the	 small	 cellular	 connectomes	 of	 invertebrate	 nervous	 systems	 translate	 to	
connectivity	found	in	neuronal	networks	of	higher	animals.	To	address	this	question,	we	will	
turn	to	recent	reports	that	studied	the	statistics	of	partial	micro-connectomes	in	the	brains	
of	mammals.	Results	of	 these	pioneering	studies	 indicate	 that	 there	are	parallels	between	
network	motifs	of	small	nervous	systems	and	cellular	connectivity	 found	 in	the	samples	of	
neuronal	 tissue	 of	 bigger	 brains.	 Despite	 promising	 progress	 in	 recent	 years	 and	 exciting	
technological	 advances8,9,	 for	 example	 in	 dense	 electron	microscopic	 (EM)	 reconstruction,	
micro-connectomics	in	the	mammalian	brain	is	still	in	its	infancy.	Further	empirical	validation	
and	 conceptual	 work	 are	 required	 to	 establish	 a	 more	 comprehensive	 and	 mechanistic	
understanding	 of	 the	 links	 between	 neuronal	 topology,	 computation	 and	 ultimately	
behaviour10,11.	 A	 key	 question	 is	 also	 which	 generative	mechanisms	 give	 rise	 to	 common	
complex	 structural	 properties	 in	neuronal	network	organization.	We	will	 therefore	discuss	
studies	 that	 provided	 insights	 into	 the	 role	 of	 neuronal	 lineage,	 synaptic	 plasticity,	 and	
neuronal	activity	for	specific	patterns	in	connectivity.	To	appreciate	how	these	programs	are	
reflected	 in	 observed	 network	 properties,	 we	will	 summarize	 experimental	work	 that	 has	
used	 genetic	 fate	mapping	 and	 retroviral	 tracing	 to	 relate	 the	 statistics	 of	mature	 cellular	
connectivity	to	neuronal	birth	dates	or	embryonic	origin.	These	studies	provide	exciting	new	
insights	 into	 how	 lineage	 and	 development	 contribute	 to	 specific	 topological	 features.	
Finally,	we	will	try	to	extract	some	shared	principles	that	have	emerged	from	connectomic	
studies	at	the	cellular	scale,	and	discuss	commonalities	that	indicate	a	possible	evolutionary	
selection	of	common	network	phenotypes	across	different	neuronal	systems	and	species.	
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Micro-connectome	topology	in	small	nervous	systems	
	
Out	of	 the	many	species	with	 small	nervous	 systems	 that	have	been	studied	over	 the	 last	
decades12–18,	 two	 organisms	 in	 particular	 have	 been	 utilized	 to	 address	 fundamental	
questions	 of	 micro-connectomic	 organization:	 the	 nervous	 system	 of	 C.	 elegans5	 and	 the	
brain	of	the	fruit	fly	Drosophila	melanogaster19.	Both	come	with	the	practical	advantage	that	
their	nervous	systems	are	relatively	small,	their	individual	neuronal	components	have	been	
studied	 in	 great	 detail,	 and	 the	 advent	 of	 powerful	 new	 imaging	 approaches	 allows	
investigators	 to	 link	animal	behaviour	 to	neuronal	network	dynamics	at	 cellular	 resolution	
(see	REF20	for	a	review).	Both	the	worm	and	the	fly	also	have	an	extensive	history	as	genetic	
model	 systems	 and	 their	 genomes	 include	 homologues	 of	 many	 neurally	 expressed	
mammalian	 genes21–23.	 Despite	 their	 small	 size	 they	 represent	 standard	 examples	 of	
complex	biological	 networks,	 demonstrating	organizational	properties	 that	have	also	been	
reported	to	exist	at	other	scales,	for	example	in	inter-regional	connectivity	of	the	brains	of	
mammals24.	 We	 will	 briefly	 introduce	 the	 connectome(s)	 of	 each	 of	 these	 organisms,	
summarize	evidence	on	the	statistics	of	their	cellular	connectivity,	and	discuss	what	can	be	
learnt	through	the	connectomic	analysis	of	these	two	model	systems.		

C.	 elegans.	 The	nervous	 system	of	 the	nematode	worm	C.	 elegans	 remains	one	of	
only	 few	 nervous	 systems	 that	 have	 been	 essentially	 completely	 mapped	 at	 the	 cellular	
scale5.	The	adult	hermaphrodite	C.	elegans	comprises	in	total	959	somatic	cells,	of	which	the	
nervous	 system	 makes	 up	 302	 neurons	 (282	 in	 the	 somatic	 nervous	 system,	 20	 in	 the	
pharynx)25.	 C.	 elegans	 neurons	 are	 structurally	 simple,	 possess	 a	 highly	 stereotypical	
morphology	and	show	only	little	branching5.	C.	elegans	neurons	have	been	sub-divided	into	
sensory	 neurons,	 motor	 neurons	 and	 interneurons5,6.	 Sensory	 neurons	 were	 classified	
according	 to	 their	 spatial	 closeness	 to	 known	 sensory	 apparatus	 or	 functional	 dissection,	
motor	 neurons	 as	 cells	 with	 neuromuscular	 junctions,	 and	 all	 remaining	 cells	 have	 been	
termed	 interneurons5,6.	Comprising	about	6400	chemical	 synapses	and	900	gap	 junctions6,	
the	 overall	 connectivity	 of	 the	 C.	 elegans	 somatic	 nervous	 system	 is	 relatively	 sparse	 (a	
connection	density	of	4%/10%	for	 the	binarized/weighted	graph;	FIG.	1).	Only	 recently	did	
studies	 begin	 to	 systematically	 map	 out	 the	 neurotransmitter	 systems	 in	 C.	 elegans,	
revealing	the	molecular	identity	of	about	90%	of	neurons26;	the	majority	of	neurons	use	as	
their	principal	neurotransmitter	either	acetylcholine	or	glutamate,	but	monoaminergic	and	
peptidergic	neurotransmitter	receptors	are	also	expressed	by	many	neurons.	There	is	now	a	
large	body	of	evidence	that	demonstrates	that	both	gap	junction	and	synaptic	connectomes	
of	C.	elegans	possess	complex	network	properties	(BOX	1):	The	C.	elegans	connectome	has	a	
hierarchical	organization	 (sensory	 neurons	 are	more	 presynaptic,	 whereas	motor	 neurons	
are	more	postsynaptic)6,10,27,	and	a	modular	community	structure	among	functionally	related	
neurons27–32;	 its	 binary	 synaptic	 connectivity	 conforms	 to	 a	 small-world	 organization6,33,	
demonstrates	 a	 long-tailed	 degree	 distribution6,34,	 and	 has	 a	 greater-than-random	
occurrence	of	some	triplet	and	quadruplet	motifs6,35,36.	Interestingly,	the	hub	neurons	of	the	
C.	 elegans	 connectome	 are	 organized	 in	 a	 rich-club37,38;	 this	 network	 core	 is	 mainly	
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composed	 of	 command	 interneurons	 of	 the	 locomotor	 circuit39–41,	 has	 high	 centrality	 (i.e.	
many	shortest	path	motifs	between	peripheral	neurons	are	routed	through	one	or	more	hub	
neurons	of	the	rich-club)6,37,	comprises	a	 large	number	of	 long-range	connections	between	
distant	functional	modules37,42,43,	and	forms	early	during	connectome	development37.			

Studies	investigating	the	wiring	economy	of	the	C.	elegans	connectome	found	that	it	
is	strongly,	but	not	strictly,	minimized	for	wiring	cost43–45.	In	other	words,	although	principles	
to	 minimize	 wire	 can	 explain	 several	 key	 aspects	 of	 the	 composition	 of	 the	 C.	 elegans	
connectome,	 their	 explanatory	power	 seems	 less	 convincing	when	 it	 comes	 to	 topological	
properties	 such	 as	 hubs	 and	 rich-clubs.	 These	 and	 other	 topologically	 integrative	
components	 of	 the	C.	 elegans	 connectome	 are	 expensively	 and	 not	minimally	wired.	 This	
high	cost	presumably	is	justified,	however,	by	the	high	functional	value	added	by	integrative	
topology	to	overall	network	performance2.	For	example,	the	gap	junction	hub	neuron	RMG	
links	several	important	sensory	neurons	and	is	of	great	importance	for	controlling	the	global	
state	of	the	animal	(FIG.	2)46,47.	Connectivity	between	interneurons	in	the	rich-club	provides	
the	anatomical	basis	 for	diverse	computational	 tasks,	 such	as	coordinated	 locomotion	and	
foraging39–41.	 Forward	 and	 backward	 movements,	 for	 example,	 are	 generated	 in	 two	
functionally	 separate	 subsets	 of	 neurons	 in	 this	 core,	 potentially	 coordinated	 through	
reciprocal	 inhibition6,44,48.	 Roberts	 et	 al.	 recently	 demonstrated	 that	 random	 search	
behaviour	 in	 the	worm	 can	be	 approximated	by	 a	 connectome-based	 stochastic	model	 of	
this	 circuit49.	 Whereas	 high-cost	 network	 components	 may	 provide	 the	 base	 for	 global	
integration	in	the	network,	specific	functional	programs	access	this	resource	flexibly	and	in	a	
context-dependent	 manner11.	 Since	 many	 neurons	 of	 the	 worm	 have	 multiplexed	
functions10,50,	 i.e.	 they	 contribute	 to	 more	 than	 one	 behaviour,	 network	 features	 that	
maximize	the	use	of	the	limited	number	of	neurons	in	the	worm	are	clearly	of	great	value51.	
High-cost	 structural	 features	 of	 the	 connectome	 may	 also	 subserve	 the	 functional	
degeneracy	 in	 C.	 elegans52,	 perhaps	 contributing	 to	 the	 animals’	 adaptability.	 Further	
progress	 in	 the	 functional	 interpretation	 of	 neuronal	 topology	 will	 come	 from	 a	 better	
integration	 of	 anatomical	 data	 with	 other	 fundamental	 layers	 of	 neuronal	 network	
functioning	 (BOX	1),	 such	as	 the	molecular	 identities	of	neurons26,	neuronal	 lineage53,	and	
large-scale	 recordings	 of	 neuronal	 activity	 under	 more	 naturalistic	 conditions54.	 Finally,	
comparative	 analyses	 provide	 a	 promising	 approach	 to	 gain	 insight	 into	 how	 ecological	
niches	 and	 environmental	 demands	 relate	 to	 differences	 in	 the	 network	 morphospace	 of	
small	nervous	systems53-55.	For	example,	Bubmarger	et	al.56	recently	compared	the	wiring	of	
C.	elegans	and	 its	close	relative,	the	predatory	nematode	Pristionchus	pacificus,	and	found	
that	topological	differences	in	configuration	of	the	pharyngeal	ganglion	might	relate	to	the	
very	different	feeding	strategies	of	both	animals.		

	
Drosophila.		Four	orders	of	magnitude	bigger	than	the	nervous	system	of	the	worm,	

the	brain	of	 the	 fruit	 fly	Drosophila	melanogaster	 consists	 of	 about	 100,000	neurons.	 The	
Drosophila	 brain	 has	 been	 anatomically	 parcellated	 into	 distinct	 neuropil	 compartments,	
each	providing	a	domain	 for	 functionally	 specific	neuronal	computation57,58.	A	whole-brain	
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connectivity	map	of	Drosophila	has	been	constructed	using	light-microscopy	(LM)	and	multi-
color	 cell	 labeling	 techniques,	 focusing	 on	 the	 projection	 pathways	 of	 about	 10%	 of	 all	
neurons	between	functionally	or	clonally-defined	brain	regions59,60.	Applying	graph	theory	to	
the	Drosophila	projection	map	provided	insight	into	its	large-scale	organizational	properties,	
demonstrating	 a	 heavy-tailed	 distribution	 of	 neuronal	 projection	 strengths,	 a	 hierarchical	
modular	 structure	 among	 its	 sensory	 processing	 units,	 small-world	 characteristics,	 and	 a	
rich-club	 structure	 comprising	 regions	 associated	with	motor	 and	 auditory	 processing59–61.	
While	 the	 feasibility	 of	 LM	 to	 measure	 finer-grained	 synaptic	 connectivity	 between	 the	
densely	packed	neurons	 in	the	fly	remains	 limited62,	electron	microscopy	(EM)	can	provide	
the	necessary	 sub-cellular	 resolution,	 and	anatomical	 reconstructions	 for	parts	of	 the	 fly’s	
optic	 lobe,	 such	 as	 cartridges	 of	 the	 lamina19,63,	 and	 columns	 of	 the	 medulla	 have	 been	
released7,64.	 Lamina	 and	 medulla	 represent	 important	 signal	 processing	 pathways	 in	 the	
Drosophila	 visual	 system:	 they	 are	 both	 composed	 of	 about	 750	 hexagonally	 shaped	
modules	 and	 demonstrate	 a	 retinotopical	 organization	 (which	 per	 se	 represents	 a	 cost-
effective	 organizational	 solution	 to	 minimize	 wire	 while	 preserving	 the	 spatiotemporal	
relationships	in	visual	information65).	Simulations	based	on	connectome	reconstruction	of	a	
lamina	cartridge	demonstrated	that	the	overall	configuration	and	modular	organization	of	its	
neurons	 can	 be	 well	 characterized	 by	 a	 combination	 of	 wiring	 minimization	 and	 volume	
exclusion63.	 In	 the	 ‘optimally-wired’	 lamina,	 neurons	 that	 make	 the	 most	 synaptic	
connections	are	located	close	together	and	centrally,	whereas	cells	with	fewer	synapses	are	
placed	 in	 the	 periphery63.	 Analysis	 of	 a	 single	 EM-reconstructed	 medulla	 column	
(reconstructed	 volume:	 37	 ×	 37	 ×	 50	 μm)	 demonstrated	 that	 its	 connectivity	 is	 highly	
directed,	 relatively	 sparse	 (each	 presynaptic	 site	 contacted	 on	 average	 only	 about	 3-4	
postsynaptic	 sites),	 can	be	partitioned	 into	modular	 processing	pathways,	 and	has	 a	 long-
tailed	distribution	in	connectivity	weights	(the	number	of	synaptic	contacts	between	a	pair	
of	 connected	 neurons)7.	 Follow-up	 analysis	 of	 additionally	 reconstructed	 neighbouring	
medulla	 columns	 demonstrated	 that	 synaptic	 wiring	 patterns	 in	 neuronal	 branching	 and	
columnar	 connectivity	 are	 highly	 stereotypical64.	 Although	 precise	wiring	 seems	 intuitively	
beneficial	 for	 accurate	 transmission	 of	 visual	 information,	 reported	 values	 on	 wiring	
accuracy	should	be	interpreted	with	caution	since	some	of	the	reconstructed	synapses	could	
actually	 not	 be	 traced	 reliably	 and	 a	 large	 number	 of	 postsynaptic	 sites	were	 omitted7,64.	
Despite	these	limitations,	connectomic	insight	into	the	architecture	underlying	connectivity	
between	 lamina	 and	 lobula	 targets	 has	 provided	 important	 clues	 for	 a	 more	 detailed	
functional	characterization	and	validation	of	historical	models	of	neuronal	circuitry	involved	
in	motion	detection	in	the	fly66.		
	

To	 summarize,	 graph	 theoretical	 analysis	 of	 the	 connectomes	 of	model	 organisms,	
such	as	C.	elegans	and	Drosophila,	has	generated	strong	evidence	that	even	small	nervous	
systems	demonstrate	hallmarks	of	 a	 complex	 topology.	Because	 the	 connectomes	of	both	
species	 share	 fundamental	 topological	 features	 in	 their	 large-scale	 organization,	 it	 seems	
reasonable	 to	 hypothesize	 that	 these	 commonalities	 represent	 evolutionarily	 preserved	
network	 phenotypes	 for	 neuronal	 computation,	 perhaps	 representing	 the	 outcome	 of	 an	



	 7	

economical	 trade-off	 between	 biological	 costs	 and	 functionally	 adaptive	 value.	 Additional	
research	is	required	to	reveal	the	functional	implications	of	topological	motifs,	in	particular	
those	 that	are	more	costly	 to	wire.	Hubs	and	rich-clubs	of	 the	C.	elegans	connectome,	 for	
example,	 seem	 to	 provide	 a	 topological	 scaffold	 that	 allows	 flexible	 switching	 between	
different	 behaviours	 and	 integration	 among	 functional	 modules.	 The	 parallel	 pathway	
architecture	of	the	Drosophila	optic	lobe,	retinotopically	arranged	and	parsimoniously	wired,	
seems	strongly	optimized	 for	 robust,	high-speed	processing	of	 information.	Computational	
benefits	 through	 common	 pathway	motifs,	 such	 as	 convergence	 and	 divergence	 (BOX	 1),	
have	been	reported	for	information	processing	in	the	Drosophila	olfactory	system	(FIG	2)67,	
Drosophila	 larva68,	and	even	mammalian	retina69.	Further	clarifying	 the	 functional	value	of	
anatomically	 defined	 network	 motifs	 in	 such	 small	 model	 organisms	 will	 require	 a	
combination	 of	 analysis	 strategies,	 such	 as	 whole-animal	 neuro-behavioural	 mapping54,70	
and	 selective	 targeting	 of	 individual	 neuronal	 components	 in	 the	 network46,47,54.	 Despite	
recent	progress	in	the	description	of	connectivity	in	small	nervous	systems	and	first	glimpses	
of	 how	 specific	 network	 motifs	 may	 impart	 information	 processing	 capabilities,	 current	
connectome	 reconstructions	 are	 still	 far	 from	 perfect.	 Even	 small	 mistakes	 in	 annotating	
synaptic	 connections	 can	 have	 major	 implications	 for	 the	 functional	 interpretation	 of	
network	 topology8,52,71;	 many	 neurons	 in	 small	 nervous	 systems	 are	 multi-functional,	
complicating	 definite	mappings	 between	 structure	 and	 function15,51;	 and	 a	 comprehensive	
integration	of	connectomic	data	with	maps	on	the	molecular	identity	of	neurons10,50	and/or	
functional	activity	at	larger-scales	has	yet	to	be	established54.	

	

Micro-connectomics	in	samples	of	mammalian	brains		

	
Over	the	last	few	years,	several	initiatives	have	started	to	systematically	map	inter-regional	
connectivity	 in	 the	 rodent	brain	using	 trans-synaptic	 tracers	 and	 LM72.	 These	 studies	have	
set	 the	 stage	 for	 comprehensive	 graph	 theoretical	 analysis	 of	 the	 complex	 topological	
organization	 of	 larger-scale	 neuronal	 networks	 comprising	 all	 or	 part	 of	 the	 mammalian	
cerebral	 cortex73,74.	 Although	 retrograde	 and	 anterograde	 tracing	 techniques	 clearly	
represent	powerful	tools	for	the	study	of	afferent	and	efferent	connection	profiles	of	brain	
regions,	an	analysis	of	whole-brain	connectivity	at	the	scale	of	 individual	synapses	remains	
technically	 challenging8.	 Even	 a	 conceptual	 framework	 for	 the	 quantitative	 analysis	 of	
synaptic	connectivity	at	the	whole-brain	scale	has	yet	to	be	established8,9.	This	has	become	
increasingly	 clear	 as	 a	 number	 of	 recent	 EM	 studies	 have	 highlighted	 fundamental	
limitations	 in	 influential	 theoretical	 proxies	 for	 the	 study	 of	 cellular	 networks,	 such	 as	
Peters’s	rule75,76,	indicating	that	axo-dendritic	proximity	alone	is	not	sufficient	to	predict	the	
existence	 of	 a	 synaptic	 connection77–79.	 Starting	 with	 principles	 that	 can	 already	 be	
suggested	from	analysis	of	individual	cells’	morphology,	we	next	outline	recent	evidence	on	
network	motifs	in	local	neuronal	connectivity	of	mammalian	brains	(BOX	2).	
	



	 8	

Neuronal	 arborization	 and	 wiring	 optimization.	 Characterizing	 the	 organizational	
patterns	of	neuronal	arbors,	as	well	as	the	type,	location	and	distribution	of	synaptic	inputs	
and	 outputs	 provides	 important	 insights	 into	 how	 morphology	 links	 to	 neuronal	
computation	 and	 connectivity80,81.	 Since	 complete	 EM-based	 mapping	 of	 the	 many	
thousands	of	 input	synapses	onto	even	a	single	cortical	neuron	remains	challenging82,	and	
most	 EM	 data	 sets	 cannot	 cover	 the	 full	 extent	 of	 all	 neuronal	 projections8,	 studies	 have	
mainly	 analysed	 neuronal	 arbors	 reconstructed	 by	 LM83–88	 (but	 see	 REFs79,89).	 Several	
approaches	 have	been	 introduced	 to	 estimate	 the	branching	 pattern	 of	 neuronal	 arbors83	
and	how	neuronal	arbors	 fill	 the	space	they	are	embedded	 in90.	The	 fractal	dimension,	 for	
example,	 is	 a	 metric	 used	 to	 quantify	 the	 extent	 to	 which	 arborization	 of	 neurons	 fully	
occupies	 the	 3D	 space	 available	 and	 has	 been	 linked	 to	 the	 propensity	 for	 synaptic	
connectivity	 (see	 REFs	 91,92	 for	 reviews;	 FIG.	 3).	 More	 recently	 introduced	 computational	
models	 have	 greatly	 expanded	 the	 possibilities	 to	 quantify	 neuronal	 morphology	 and	 to	
probe	underlying	constraints.	Wen	et	al.87	tested	how	dendritic	branching	structure	links	to	
principles	of	wiring	cost	minimization	by	applying	evolutionary	optimization	algorithms	and	
found	 that	 the	 dendritic	 arbor	 structure	 of	 Purkinje	 cells	 in	 the	 cerebellum	 is	 largely	
consistent	 with	 rules	 to	 minimize	 total	 wire	 length	 or	 to	 avoid	 overlap	 of	 spine-reach	
zones87.	 Analysis	 of	 basal	 dendrites	 of	 pyramidal	 neurons	 in	 the	 cerebral	 cortex	
demonstrated	that	dendritic	arbor	radius	scales	with	total	dendritic	length,	as	does	the	pair-
wise	 spatial	 correlation	 between	 dendritic	 branch	 segments86.	 A	minimum-spanning-tree	
(MST)	approach	was	introduced	to	study	the	relationship	between	neuronal	arbor	structure	
and	connectivity93.	Cuntz	et	al.84	improved	on	this	conceptual	framework	and	developed	an	
algorithmic	procedure,	which	allows	comparison	of	synthetically	grown	dendritic	trees	to	LM	
reconstructed	 neuronal	 trees.	 Their	 analysis	 provided	 a	 series	 of	 interesting	 new	 insights	
into	how	constraints	 for	economical	 resource	allocation,	 such	as	 the	balance	between	 the	
cost	 of	 biological	 material	 and	 the	 cost	 of	 conduction	 time,	 may	 govern	 dendritic	
architecture88.	 While	 application	 of	 this	 analysis	 strategy	 to	 a	 large	 set	 of	 morphological	
reconstructions	 from	 the	NeuroMorph.org	 database94	 demonstrated	 that	 dendrites	 of	 the	
various	cell	classes	balance	wiring	costs	differently,	the	relationships	between	key	features	
in	their	morphology	followed	scaling	laws	that	could	be	predicted	by	models	based	on	wiring	
minimization	principles88.		

Taken	 together,	data	on	dendritic	branching	and	morphology	over	a	wide	 range	of	
cells	 fit	 well	 with	 principles	 to	 conserve	 cellular	 cytoplasm	 and	 conduction	 time	 –	
reminiscent	of	Ramón	y	Cajal’s	postulate	that	many	details	of	neuronal	morphology	can	be	
explained	 by	 general	 conservation	 laws	 for	 space,	 time	 and	 material88.	 These	 intricate	
branching	 patterns	 are	 likely	 established	 during	 development	 through,	 for	 example,	 self-
avoidance	rules	and	competition	between	sibling	dendrites95.	How	organizational	principles	
at	 the	 scale	 of	 axonal	 and	 dendritic	 arbors	 relate	 functionally	 to	 optimal	 information	
processing	 and	 storage	 capacities	 at	 the	 network-level	 has	 been	 addressed	 by	 a	 series	 of	
theoretical	studies86,96,	but	remains	to	be	tested	experimentally.	
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Long-tailed	 synaptic	 connectivity.	 As	 documented	 for	 many	 biological	 and	 social	
networks,	 key	 neurophysiological	 parameters	 in	 neuronal	 networks	 follow	 long-tailed	
distributions	(see	REF97	for	a	review).	At	the	level	of	local	circuits,	it	is	well	established	that	
synaptic	 strengths	 follow	 a	 lognormal	 distribution,	 i.e.	 the	 majority	 of	 unitary	 excitatory	
postsynaptic	potentials	(EPSPs)	in	simultaneous	recordings	of	pre-	and	postsynaptic	neurons	
are	small,	with	only	a	small	proportion	of	large	EPSPs98–101	(FIG.	3).	Preferentially	connected	
subgroups	 of	 neurons,	 comprising	 a	 skeleton	 of	 a	 few	 strong	 connections,	 have	 been	
suggested	 to	 provide	 a	 means	 of	 effective	 information	 processing	 and	 stimulus	
representation	 in	 local	networks102–104;	probing	a	 link	between	 information	processing	and	
connection	strength	experimentally,	however,	has	long	remained	difficult.	Combining	in	vivo	
optical	imaging	of	principal	neurons	(PNs)	in	layer	(L)	2/3	of	mouse	primary	visual	cortex	(V1)	
with	post-hoc	whole-cell	recordings	in	slices,	a	recent	study	by	Cossell	et	al.105	demonstrated	
that	 a	 small	 subset	 of	 strong	 synaptic	 connections	 preferentially	 links	 PNs	 with	 similar	
receptive	 field	 structures.	 These	 strong	 connections	 among	 PNs	 have	 been	 suggested	 to	
provide	 a	 mechanism	 for	 selective	 amplification	 of	 thalamic	 input	 signals	 in	 V1106;	 the	
observed	 overall	 distributions	 in	 synaptic	weights	 in	 this	 region	 could	 hence	 relate	 to	 the	
functional	 couplings	 among	 PNs.	 The	 presence	 of	 cells,	 or	 groups	 of	 cells,	 with	 high	
functional	 connectivity	 could	 also	 indicate	 network	 components	 with	 high	 topological	
centrality,	 such	 as	 hubs	 and	 rich-clubs107,108.	 Studies	 using	 calcium	 imaging	 in	 slices	 of	
developing	hippocampus	found	that	sub-populations	of	GABAergic	interneurons	(INs)109	and	
early-born	 PNs110	 display	 a	 high	 degree	 of	 functional	 connectivity.	 Morphological	 and	
physiological	 characterization	of	 these	 cells	demonstrated	 that	early-born	 INs	 in	particular	
show	 features	 in	 their	 axonal	 arborization	 and	 effects	 on	 local	 network	 activity	 that	may	
determine	their	fate	as	functional	hubs	in	the	network111.	Classification	of	INs	according	to	
their	 arborization	 into	connector	 hubs	 (e.g.	 hippocampal	 INs	with	 long-range	axons	 to	 the	
medial	 septum112,113)	 and	 provincial	 hubs	 (e.g.	 INs	 that	 display	 mainly	 intra-hippocampal	
arborization114)	 has	 been	 proposed111.	 IN	 hubs	 may	 also	 be	 involved	 in	 orchestrating	
synchronous	 network	 activity115,116.	 A	 role	 for	 IN	 networks	 in	 connecting	 distinct	 target	
regions	 in	 the	brain	with	 long-range	axonal	projections	has	been	suggested	as	a	means	of	
keeping	the	average	path	 length	of	neuronal	networks	 low117.	Heavy-tailed	distributions	of	
functional	 connectivity	 were	 also	 observed	 in	 studies	 using	 transfer	 entropy	 analysis	 of	
spontaneous	neuronal	activity	recorded	by	multi-electrode	arrays	 (MEAs)	 in	vitro118,119	and	
in	 silicon-based	 microprobe	 recordings	 in	 vivo108.	 Interestingly,	 these	 studies	 found	 that	
highly-connected	hub	neurons	may	be	organized	in	rich-clubs107,108,	that	neurons	comprising	
these	 network	 cores	 receive	 significantly	more	 inputs108,	 display	 significantly	 higher	 firing	
rates108,	and	may	form	their	connections	early	during	network	development107.		

Although	there	seems	to	be	good	evidence	for	hubs	and	 long-tailed	distributions	 in	
functional	 connectivity,	 patch-clamp	 studies	 of	 structural	 connectivity	 between	 PNs	
generally	 did	 not	 observe	 such	 distributions100.	 	 Also,	 to	 our	 knowledge,	 no	 EM	 study	 of	
cortical	 tissue	has	yet	 found	hub	neurons	defined	by	anatomical	 connectivity	alone.	Some	
indirect	support	for	heavy-tailed	distribution	of	synaptic	contacts	at	the	cellular	level	comes	
from	 new	 synaptic	 labelling	 methods,	 such	 as	 mGRASP120,	 and	 modeling	 work	 which	
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demonstrated	 that	 neuronal	 networks	 with	 hubs	 can	 potentially	 better	 explain	 the	
distribution	of	in	vivo	firing	rates121.		

	
Clustered	 and	 modular	 connectivity.	 Following	 the	 seminal	 work	 by	 Watts	 and	

Strogatz33,	which	demonstrated	the	presence	of	a	small-world	organization	in	the	C.	elegans	
connectome,	 numerous	 studies	 searched	 for	 above-random	 clustering	 in	 neuronal	
connectivity	at	the	cellular	scale.	Features	indicating	a	small-world	topological	organization	
were	reported	for	synaptic	connectivity	of	patch-clamp	recordings	 in	L5	rat	somatosensory	
cortex100,	 and	 a	 series	 of	 studies	 examined	 this	 phenomenon	 in	 functional	 connectivity	
derived	 from	 spontaneous	 activity	 in	 cultures,	 slices,	 and	 the	 living	 animal122–129.	 The	
emergence	of	small-world	 features	was	also	reported	for	developing	neuronal	networks	 in	
dissociated	neuronal	cultures107,126,130.	 Importantly,	different	forms	of	clustering	have	been	
reported	in	the	literature98,100,129:	 ‘topological	clustering’	has	been	described	for	structured	
connectivity	 in	 which	 neurons	 form	 closed	 triangular	 motifs	 irrespective	 of	 inter-nodal	
distances100,129,131;	in	contrast,	‘spatial	clustering’	refers	to	topological	clustering	that	can	be	
mainly	 explained	 by	 a	 distance-related	 drop-off	 in	 connectivity,	 i.e.,	 clustered	 nodes	 also	
tend	to	be	spatially	adjacent132.	Finally,	sub-cellular	‘synaptic	clustering’	refers	to	the	spatial	
arrangement	of	synapses	on	the	dendritic	tree.	Synaptic	clustering	likely	plays	an	important	
role	in	synaptic	integration80,	and	was	observed,	for	example,	in	synapses	with	functionally	
related	inputs	during	spontaneous	activity133,	and	among	synapses	of	hippocampal	neurons	
whose	 pre-synaptic	 neurons	 shared	 a	 similar	 developmental	 time	 window120.	 Numerous	
modeling	studies	have	tested	how	clustering-related	properties	may	evolve	during	neuronal	
network	 formation134,	 how	 clustering	 is	 maintained	 by	 plasticity	 mechanisms135,136,	 and	
whether	 it	 affects	 synchronization	 dynamics117,137.	 Whereas	 evidence	 in	 support	 of	 the	
functional	role	of	synaptic	clustering	in	dendritic	computation	in	some	areas	of	the	brain	has	
accumulated	 quite	 consistently133,138,	 testing	 the	 functional	 significance	 of	 topological	
properties,	such	as	a	small-worldness	in	local	connectivity,	remains	difficult117,139.		

Several	 recent	 studies	 have	 also	 reported	 a	 modular	 structure	 in	 local	 synaptic	
connectivity.	 Combining	 in	 vivo	 functional	 imaging	 with	 mono-synaptic	 retrograde	 trans-
synaptic	 tracing,	 Wertz	 et	 al.140	 provided	 an	 important	 example	 of	 how	 to	 determine	
functional	modular	organization	in	mouse	V1	across	L2/3	and	5.	The	study	inferred	the	pre-
synaptic	 networks	 of	 single	 PNs	 in	 L2/3	 and	 found	 that	 there	 are	 layer-specific	 functional	
modules	 that	 could	 be	 locked	 to	 the	 direction	 preference	 of	 the	 post-synaptic	 cell140.	
Modular	 connectivity	 was	 also	 reported	 in	 two	 recent	 EM	 studies	 in	 mice141,142.	 A	 non-
random	community	structure	in	the	synaptic	connectivity	of	201	V1	L2/3	PNs	was	found	in	a	
study	combining	in	vivo	functional	imaging	with	post-hoc	EM	reconstruction	(reconstructed	
volume:	 450	 ×	 450	 ×	 50	 μm;	 FIG.	 3)141.	 Importantly,	 the	 study	 also	 confirmed	 previous	
electrophysiological	work,	which	had	shown	that	PNs	with	similar	orientation	selectivity	are	
preferentially	 connected	 to	 each	 other101.	 An	 EM	 study	 of	 parts	 of	 the	 lateral	 geniculate	
nucleus	(LGN;	reconstructed	volume:	400	×	600	×	280	μm),	indicated	that	the	organization	of	
synaptic	connectivity	can	be	fuzzy,	i.e.	indicative	of	a	strongly	overlapping	modular	affiliation	
in	which	network	nodes	belong	to	several	different	sub-networks142.	Future	work	will	have	
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to	test	the	functional	relevance	of	such	differences	in	modular	structure	to	rule	out	potential	
(slicing)	artefacts	due	to	subsampling	of	the	neuronal	network8.		

	
Network	 motifs.	 Micro-connectomic	 organization	 has	 also	 been	 studied	 by	

quantifying	 the	 distribution	 of	 specific	 higher-order	 network	 motifs35.	 In	 one	 of	 the	 first	
experimental	 studies	 of	 these	 local	 building	 blocks,	 Markram	 et	 al.143	 estimated	 PN	
connectivity	in	slices	of	L5	rat	somatosensory	cortex	using	whole-cell	patch-clamp	recordings	
and	 demonstrated	 that	 the	 proportion	 of	 bidirectional/reciprocal	 connections	 clearly	
exceeded	the	number	of	connections	one	would	expect	in	a	random	network.	Using	similar	
electrophysiological	 methods,	 follow-up	 studies	 reported	 evidence	 for	 an	 over-
representation	of	network	motifs	in	the	local	connectivity	among	PNs	of	rat	visual	cortex131,	
ferret	prefrontal	cortex149,	and	rat	somatosensory	cortex100.	An	above-random	occurrence	of	
transitive	three-neuron	motifs	in	synaptic	IN	connectivity,	such	as	feed-forward	triplets,	and	
a	large	overlap	between	chemical	and	gap	junction	connectivity,	has	also	been	reported	for	
cerebellar	 networks144.	 Searching	 for	 rules	 that	 could	 potentially	 explain	 experimentally	
observed	 wiring	motifs,	 Perin	 et	 al.100	 reported	 that	 the	 connection	 probability	 of	 PNs	 is	
increased	when	 neurons	 receive	 common	 input	 and	 that	 the	 latter	 is	 correlated	with	 the	
number	 of	 common	 neighbours	 –	 the	 so-called	 ‘common	 neighbour	 rule’100.	 Evidence	 in	
qualitative	 agreement	 with	 this	 principle	 came	 from	 functional	 connectivity	 studies	 using	
transfer	 entropy	 analysis	 of	 the	 intrinsic	 neuronal	 spontaneous	 activity	 in	 cortical	 slice119,	
and	 could	 relate	 to	 results	 from	 imaging	 studies	 on	 co-activation	 dynamics	 among	 PNs	 in	
auditory145,	visual153	and	prefrontal	cortex147.	Despite	recent	patch-clamp	work	in	vivo148,149,	
which	seems	to	be	largely	in	line	with	previous	reports	on	local	connectivity	in	vitro,	findings	
on	 network	motifs	 remain	 controversial	 due	 to	 potential	 artefacts	 caused	 by	 sparse	 local	
electrophysiological	recordings	and	slicing	of	neuronal	tissue.	Some	of	the	studies	discussed	
above	have	made	attempts	to	take	these	effects	into	account,	but	many	questions	remain.		

Motifs	 in	 reciprocal	 connectivity	 between	 cortical	 PNs,	 more	 generally,	 have	 been	
hypothesized	to	contribute	to	various	computational	 tasks,	such	as	amplifying	 inputs105,141,	
shaping	 receptive	 field	properties101,150,	 and	prolonging	activity	 for	 computation	 in	higher-
order	 cortical	 areas151,152.	 Network	 motifs	 could	 also	 provide	 a	 structural	 backbone	 for	
synchronizing	functional	cell	assemblies	(often	referred	to	as	“cliques”)153,154.	 In	the	retina,	
wiring	motifs,	 in	particular	asymmetric	connectivity	of	starbust	amacrine	cells	 to	direction-
selective	 ganglion	 cells,	 have	 been	 confirmed	 as	 key	mechanisms	 for	 the	 computation	 of	
motion	direction79;	convergence	and	divergence	pathways	are	well-studied	wiring	motifs	in	
circuits	 underlying	 chromatic	 processing69.	 Further	 studies	will	 be	 required	 to	 connect	 the	
quantitative	analysis	of	structural	motifs	with	experiments	that	test	the	functional	motifs	in	
cell-type	and	layer-specific	connectivity	(see	REFs155–157	for	reviews;	BOX	2).	 It	also	remains	
to	be	determined	how	the	occurrence	of	specific	synaptic	motifs	correlates	with	large-scale	
neuronal	architecture141,144,	whether	it	differs	between	brain	regions99,100,131,143,144,	and	how	
motifs	 impact	 on	 specific	 computational	 needs	 for	 information	 processing.	 A	 recent	
modeling	study,	for	example,	suggested	that	the	empirical	differences	in	motif	distributions	
in	different	cortical	regions	may	indicate	that	neuronal	network	architectures	are	optimized	
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for	the	storage	of	different	forms	of	information	(information	stored	in	the	form	of	specific	
‘attractor	states’	vs.	‘sequences	of	activity’)158.		

	
Applying	graph	theory	to	analysis	of	local	connectivity,	studies	have	revealed	a	wide	

range	of	topological	properties.	Since	most	graph	theoretical	analyses	of	mammalian	micro-
connectomes	 were	 applied	 to	 sparse	 graphs,	 for	 example	 constructed	 from	 patch-clamp	
recordings	 in	 slices	 acquired	 over	 many	 specimens,	 it	 seems	 likely	 that	 these	 and	 other	
pioneering	data	will	have	under-sampled	the	intact	mammalian	cortex.	More	specifically,	it	
remains	difficult	to	fully	map	the	axonal	arborization	and	dendritic	connectivity	of	neurons	
with	 extensive	 axonal	 projections	 up	 to	 several	 millimetres	 from	 the	 neuronal	 soma.	
Therefore,	 graph	 theoretical	 results	 that	 are	 based	 on	 path	 lengths	 between	 neurons	 in	
cortical	 networks	 should	 currently	 be	 regarded	 as	 provisional.	 As	 techniques	 for	 cortical	
tissue	 mapping	 continue	 to	 improve,	 and	 synaptic	 connectivity	 can	 be	 more	 completely	
mapped	for	several	cubic	millimetres	of	cortex,	the	more	integrative	aspects	of	mammalian	
micro-connectome	topology,	such	as	long-distance	projections	between	neuronal	modules,	
are	likely	to	be	resolved	more	clearly.		

	
	
Development	of	micro-connectomic	architecture		
	
Which	mechanisms	 and	 developmental	 programs	 give	 rise	 to	 complex	micro-connectomic	
topology?	Which	aspects	are	genetically	determined,	and	which	aspects	develop	postnatally	
in	 response	 to	 environmental	 contingencies?	 Much	 experimental	 evidence	 has	 been	
produced	to	address	these	questions	both	at	the	sub-cellular	and	cellular	scale	(FIG.	4),	and	
excellent	 reviews	on	 the	development	of	 specific	 synaptic	 connectivity	 are	available159–166.	
Here,	we	restrict	ourselves	to	a	discussion	of	recent	work	that	tested	how	genetic	fate	may	
relate	to	cell-type	specific	connectivity	and	we	briefly	discuss	how	cell-lineage	and	plasticity	
mechanisms	may	contribute	to	micro-connectomic	organization.	
	

Cell-lineage	 dependent	 connectivity.	Numerous	 studies	 in	 smaller	nervous	 systems	
have	provided	evidence	that	neuronal	lineage	is	a	driver	of	network	topology.	In	C.	elegans,	
for	example,	neurons	that	share	similar	birth	dates	during	development	have	been	linked	to	
long-range	 connectivity,	 hubs,	 and	 rich-clubs37,167.	 Analysis	 of	 neuronal	 lineages	 in	
Drosophila	 provided	 key	 insights	 into	 the	 highly	modular	 organization	 of	 its	 inter-regional	
connectivity60.	 Although	 there	 is	 a	 large	 body	 of	 evidence	 on	 the	 genetic	 mechanisms	
underlying	 early	 patterning,	 arealization	 and	 lamination	 of	 mammalian	 cortex,	 it	 has	 not	
been	possible	until	recently	to	directly	assess	how	features	in	local	connectivity	are	linked	to	
embryonic	 origin	 and	 developmental	 history163.	 Using	genetic	 fate	mapping	and	 retroviral	
labelling	 in	 radial	glial	 cells,	 studies	have	now	demonstrated	that	vertically	aligned	cortical	
sister	(principal)	neurons	preferentially	form	connections	with	each	other,	first	via	transient	
electrical	 connections168,	 and	 later	 via	 chemical	 synapses169.	 Lineage-dependent	 circuit	
formation	 may	 thereby	 give	 rise	 to	 ‘ontogenetic	 modules'	 as	 precursors	 of	 the	 mature	
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columnar	 structure	 of	 the	 neocortex160,170.	 Furthermore,	 recent	 studies	 that	 combined	
retroviral	fate	mapping	with	 in	vivo	 imaging	have	found	that	sister	neurons	in	visual	cortex	
may	share	functional	features,	such	as	orientation	preference170.	This	wiring	logic	may	also	
link	to	recent	reports	of	preferential	structural	connectivity	among	functionally	related	PNs	
in	 rodent	 L2/3	 visual	 cortex101,141.	 Developmental	 time	 windows	 may	 reflect	 differential	
synaptic	 connectivity	 found	 in	 sub-regions	 of	 the	 hippocampus120,171.	 Xu	 et	 al.172	
demonstrated	 that	 hippocampal	 PNs	 from	 the	 same	 clone	 possess	 a	 high	 probability	 of	
receiving	 common	 input	 from	 nearby	 INs,	 which	 could	 link	 them	 to	 functional	 cell	
assemblies.	Similar	 to	 the	 fate	of	PNs,	 the	position,	morphology	and	physiology	of	 INs	are	
also	 strongly	 affected	 by	 developmentally	 regulated	 genetic	 programs,	 and	 the	 place	 and	
time	of	birth.	 INs	migrate	tangentially	through	the	cortex	(see	REFs	173,174	for	reviews),	and	
seem	to	organize	in	a	lineage-dependent	manner,	potentially	in	spatially	distinct	topological	
clusters175.	 Birth-dating	 studies	 demonstrated	 that	 INs	 born	 at	 different	 embryonic	 time	
points	 follow	 sometimes	 circuitous	 migration	 routes	 to	 populate	 different	 cortical	
layers176,177.	Lineage-specific	IN	clustering	has	been	reported	for	all	major	IN	classes178.	From	
a	topological	point	of	view	 it	 is	also	 interesting	that	cells	 that	may	be	destined	to	become	
(GABAergic)	 hub	 neurons	 in	 the	 developing	 hippocampus	 share	 an	 early	 birth	 date114.	 IN	
networks	 that	 form	 early	 in	 development	 may	 provide	 anatomical	 foundations	 and	
topological	 scaffolding	 for	 later	 development	 of	 functional	 connectivity	 and	 control	 of	 PN	
dynamics97.		

Taken	 together,	 these	 results	 suggest	 that	 functionally	 relevant	 topological	
patterning	between	PNs	and	 INs	may	be	established	over	 the	course	of	development	with	
lineage	 and	 neuron	 birth	 time	 as	 important	 (yet	 certainly	 not	 exclusive)	 determinants	 of	
connectivity.	Whether	these	processes	can	be	formally	described	by	any	kind	of	generative	
model,	e.g.,	preferential	attachment,	remains	to	be	tested.		

	
Activity-dependent	 plasticity.	 Activity-dependent	 plasticity	 is	 important	 in	 shaping	

the	network	architecture	during	development,	and	also	maintains	the	malleability	of	mature	
networks	to	enable	adaptation	to	new	functional	demands.	Most	of	the	plasticity	takes	place	
at	 the	 level	 of	 synaptic	 connections,	 and	 multiple	 synaptic	 learning	 rules	 have	 been	
identified,	 based	 on	 the	 rate179–181,	 pattern182,183	 or	 timing	 of	 spikes184,185,	 cooperativity	
among	 inputs186;	 or	 a	 combination	 of	 rules187.	 These	 learning	 rules	 act	 in	 concert	 with	
homeostatic	 synaptic	 scaling	mechanisms,	 which	 contribute	 to	 stability	 of	 neuronal	 firing	
rates188.	 Spike	 timing-dependent	 plasticity	 (STDP)	 is	 a	 synaptic	 learning	 rule	 that	 has	
attracted	 particular	 attention	 because	 of	 its	 physiological	 plausibility	 and	 computational	
appeal189.	 In	 STDP,	 the	 order	 and	 precise	 timing	 of	 presynaptic	 and	 postsynaptic	 spikes	
determine	 the	 outcome	 of	 correlated	 presynaptic	 and	 postsynaptic	 activity.	 However,	
because	 little	 is	 known	 about	 the	 actual	 spike	 trains	 that	 drive	 synaptic	 plasticity	 during	
development,	 we	 do	 not	 know	 which	 of	 these	 rules,	 or	 combination	 of	 rules,	 prevail.	
Interestingly,	synaptic	learning	rules	are	often	both	source	cell	and	target	cell	specific190	and	
are	 subject	 to	neuromodulation191.	Of	 importance	 for	 the	 functional	network	connectivity,	
most	 of	 these	 synaptic	 learning	 rules	 are	 directional.	 In	 fact,	 STDP	 was	 discovered	 in	
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bidirectionally	 connected	 pairs	 of	 cortical	 neurons,	 with	 the	 connection	 one	 way	
strengthening	 in	response	to	one	spike	order	and	the	reciprocal	connection	weakening	for	
the	 complementary	 spike	order184.	However,	 recently	 it	was	 reported	 in	hippocampal	CA3	
recurrent	connections	that	the	plasticity	in	this	system	is	symmetrical,	with	both	positive	and	
negative	 spike	 pairings	 inducing	 potentiation192,	 suggesting	 that	 specific	 synaptic	 learning	
rules	may	be	associated	with	 specific	network	 functions,	 such	as	 the	 storage	and	 recall	of	
information	in	the	case	of	the	hippocampus192	(see	also	REF159).		A	series	of	modeling	studies	
has	used	STDP	to	derive	mechanistic	explanations	for	topological	findings,	such	as	lognormal	
distributions	 in	 synaptic	 weights193,	 and	 the	 refinement	 of	 recurrent	 connectivity	 in	
developing	 V1194.	 Hebbian-like	 adaptive	 rewiring	 rules	 have	 been	 implicated	 in	 explaining	
the	development	of	small-world195	or	rich-club	structure196;	homeostatic	structural	plasticity	
has	 been	 suggested	 to	 be	 involved	 in	maintaining	 a	 topologically	 efficient	 global	 network	
architecture197.	

	In	 sum,	 the	 studies	 summarized	 above	 suggest	 that	 the	 structure	 of	 local	
connectivity	 is	 pre-configured	 by	 genetic	 programs	 and	 continuously	 re-modelled	 by	 a	
combination	 of	 plasticity	 mechanisms	 to	 optimize	 its	 information	 processing	 and	 storage	
capabilities.		
	
	

Emerging	principles	and	functional	implications	
	
In	the	previous	sections	of	this	Review,	we	have	detailed	the	topological	properties	of	micro-
connectomes,	both	in	structural	reconstructions	of	nearly	intact	small	nervous	systems	and	
in	 partial	 connectomes	 derived	 from	 small	 samples	 of	 mammalian	 brains.	 We	 have	 also	
outlined	some	of	the	determining	factors	that	may	guide	the	development	and	plasticity	of	
micro-connectomes.	 In	 the	 remainder,	 we	 return	 to	 Ramón	 y	 Cajal’s	 seminal	 concept	 of	
conservation	 laws	 and	 review	 some	 of	 the	 evidence	 that	micro-connectomic	 organization	
does	indeed	represent	the	expression	of	a	few	fundamental	selection	pressures.		
	

Shared	 constraints,	 diverse	neuronal	morphology.	Searching	for	the	wiring	rules	 in	
micro-connectomic	 topology,	 it	helps	 to	 realize	 that	evolution	had	several	million	years	 to	
optimize	the	various	functional	layers	(BOX	1)	that	underlie	neuronal	signalling	and	storage	
of	information.	It	is	therefore	reasonable	to	assume	that	these	evolutionary	pressures	have	
also	optimized	the	mechanisms	that	determine	cellular	network	topology.	But	what	exactly	
is	neuronal	topology	optimized	for?	Which	constraints	have	to	be	overcome?	Ramón	y	Cajal	
famously	inferred	a	few	general	conservation	laws,	specifically	for	space,	time	and	material.	
Translating	these	 laws	to	the	 language	of	connectomics,	conservation	of	space	means	that	
networks	 are	 wired	 to	 minimize	 the	 amount	 of	 intracranial	 volume	 that	 connectivity	
consumes;	conservation	of	material	means	that	networks	are	wired	to	minimize	the	amount	
of	 biological	 resources	 that	 connectivity	 consumes;	 and	 conservation	 of	 time	means	 that	
networks	 are	 wired	 to	 minimize	 the	 conduction	 delay	 in	 transmitting	 an	 electrical	 signal	
between	neurons.	Arguably,	these	categories	are	still	rather	broad,	but	they	provide	a	good	
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starting	point	for	quantifying	how	biophysical	constraints,	such	as	the	electrical	resistance	of	
cytoplasm3,	shape	micro-connectomic	topology	and	to	look	for	motifs	in	micro-connectomic	
structure	 that	 are	 advantageous	 for	 the	 computation	 of	 information.	 Importantly,	 any	
discussion	on	 the	optimality	of	network	 layouts	must	not	 forget	 that	cellular	diversity	and	
specialization	 by	 itself	 represents	 the	 result	 of	 an	 optimization	 process.	 Although	 all	
neuronal	 components	 may	 share	 fundamental	 constraints,	 the	 experimentally	 observed	
diversity	 in	neuronal	 types	and	morphology	 is	a	 salutary	 reminder	 that	 there	are	different	
ways	 to	 optimize	 neuronal	 structure	 to	 fit	 computational	 needs.	 As	 demonstrated	 in	
theoretical	 studies,	 this	 optimization	at	 the	 level	 of	 neuronal	 arborization	 likely	 involves	 a	
trade-off	 between	 various	 biological	 costs,	 among	 them	 cellular	 material	 and	 conduction	
time	delay84.	Diversity	 in	 functionally	 specialized	 cells	 allows	 ‘division	of	 labour’	 in	 circuits	
and	 likely	 represents	 a	 prerequisite	 for	 the	 optimization	 of	 functionality	 at	 the	 global	
network	scale.		

	
Diverse	 circuits,	 shared	 network	 motifs.	 Diversity	 does	 not	 stop	 at	 the	 level	 of	

neurons,	 of	 course,	 but	 is	 a	 prominent	 architectural	 feature	 that	 distinguishes	 functional	
units/circuits	 across	 the	 brain.	 The	 characteristic	 composition	 of	 cells	 and	 their	 inter-
connectedness	 is	 key	 to	 an	 understanding	 of	 how	 different	 neuronal	 networks	 confer	
specific	functions	and	computations.	Interestingly,	however,	there	are	several	motifs	in	the	
topological	organization	of	micro-connectomes	that	are	shared	across	functional	circuits	and	
across	 different	 species.	 For	 example,	 studies	 in	 sensory-motor,	 visual,	 and	 prefrontal	
cortices	 (in	 slice)	 all	 reported	 significantly	 above-random	 frequency	 of	 specific	 reciprocal	
higher-order	network	motifs	among	PNs100,131,143,152.	Modular	structure	is	another	ubiquitous	
feature	of	local	connectivity,	as	demonstrated	by	both	structural	reconstruction	of	synaptic	
connectivity	using	EM141,142	and	graph	theoretical	analysis	of	functional	connectivity	data119.	
Pathway	motifs,	 such	as	convergence	and	divergence,	similarly	 recur	 in	various	systems	of	
early	sensory	processing66,67,79.	Canonical	motifs	in	PN	and	IN	connectivity,	such	as	feed-back	
inhibition,	 feed-forward	 inhibition,	 and	 dis-inhibition	 coexist	 across	 the	 cortex	 and	 are	 a	
prerequisite	 for	 the	 generation	 of	 neuronal	 dynamics.	 A	 more	 detailed	 analysis	 of	 the	
regionally	 specific	 quantity	 and	 composition	 of	 these	 motifs	 will	 provide	 a	 more	
comprehensive	understanding	of	their	operational	significance	for	storage	and	processing	of	
information	 in	 networks	 and	 how	 they	 contribute	 to	 the	 economical	 use	 of	 resources	 in	
nervous	 systems117,158.	 Both	 topological	 and	 elementary	 functional	 motifs	 are	 not	 only	
conserved	 among	 different	 brain	 regions	 but	 have	 homologues	 across	 species198,199.	 One	
possible	 reason	 for	 the	 ubiquity	 of	 these	 topological	 motifs	 is	 that	 they	 might	 represent	
economical	 solutions	 to	 a	 trade-off	 between	 biological	 costs	 and	 recurring	 computational	
needs.	 How	 specific	 combinations	 of	 these	 ‘computational	 primitives’200	 give	 rise	 to	
emergent	functional	states,	however,	remains	a	largely	open	question.	
	

Economical	 growth	 and	 plasticity.	 Studying	 micro-connectome	 development	 and	
plasticity	 has	 provided	 important	 insights	 into	 the	 processes	 that	 give	 rise	 to	 its	 intricate	
topological	organization.	A	large	body	of	work	has	implicated	various	economical	principles	
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in	the	formation	of	neuronal	networks,	ranging	from	intra-	and	inter-axonal	competition	for	
growth	 factor	 signals166,201,	 via	 maximization	 of	 potential	 connectivity	 at	 the	 scale	 of	
dendritic	 arbors96,	 to	 generative	 economical	 growth	models	 for	 the	 developing	C.	 elegans	
connectome202.	 Tracking	 the	 development	 of	 cellular	 topology	 in	 larger	 brains	 remains	
difficult,	but	a	few	studies	provided	at	least	indirect	evidence	for	molecular	cues	and	lineage	
as	 drivers	 of	 their	 organization.	 A	 recent	 study	 modified	 the	 expression	 levels	 of	 cell	
adhesion	 molecules	 (CAMs)	 in	 cells	 of	 the	 developing	 Drosophila	 lamina	 cartridge	 and	
demonstrated	that	N-Cadherin	(CadN)-mediated	differential	adhesion	is	 involved	in	neurite	
positioning,	 which	 is	 a	 prerequisite	 for	 economical	 wiring203,204.	 Genetic	 fate	 mapping	
demonstrated	 that	 some	aspects	of	 local	 connectivity	 are	pre-configured160,168,205.	While	 it	
may	 be	 expected	 that	 such	 structure	 provides	 guidance	 for	 the	 formation	 of	 functional	
connectivity,	the	exact	degree	of	genetic	regulation	and	topological	pre-configuration	is	not	
fully	 understood.	 Differences	 between	 neuronal	 subsystems	 seem	 likely:	 whereas	
connectivity	within	modules	specialized	pathways	for	early	sensory	processing	likely	benefit	
from	 precise	 wiring	 imposed	 by	 strong	 genetic	 regulation,	 local	 connectivity	 of	 higher	
cortical	 areas	 may	 benefit	 from	 topological	 scaffolds	 that	 allow	 more	 activity-dependent	
fine-tuning.	 Such	 subsystem-specific	 differences	 in	 plasticity	 could	 represent	 an	
evolutionarily	preserved	strategy	for	the	economical	use	of	specialized	biological	resources	
and	 contribute	 to	 the	 adaptability	 of	 the	 organism.	 The	 link	 between	 various	 forms	 of	
plasticity,	energy-saving	signalling	strategies,	such	as	sparse	coding206,	and	network	topology	
needs	further	investigation,	though.	

	

Conclusion		
	
In	 this	 Review	we	 summarized	 recent	 studies	 on	 the	organizational	 principles	 of	 neuronal	
networks	at	the	microscopic	scale.	We	first	outlined	common	themes	that	emerged	from	the	
study	 of	 small,	 invertebrate	 connectomes,	 such	 as	C.	 elegans,	 and	partial	 connectomes	 in	
samples	 of	 mammalian	 brains.	 We	 then	 outlined	 evidence	 for	 a	 complex	 topological	
organization	of	micro-connectomes	that	is	consistent	with	seminal	concepts	of	conservation	
laws	 now	quantitatively	 explicable	 by	 a	 competition	 or	 economical	 trade-off	 between	 the	
cost	 of	 wiring	 and	 topological	 integration.	 However,	 there	 is	 still	 a	 large	 gap	 in	 our	
understanding	 of	 how	micro-connectomic	 topology	 and	 neuronal	 computation	 are	 linked.	
Also,	most	of	the	current	graph	theoretical	metrics	do	not	capture	all	there	is	to	say	about	
the	 structure	 and	 function	of	 neural	 systems.	 In	 particular,	 the	distinct	 functional	 roles	 of	
different	 types	of	neurons	and	the	directionality	of	 information	 flow	 in	neuronal	networks	
are	 often	 not	 considered.	 Nevertheless,	 multiple	 lines	 of	 evidence	 suggest	 that	 the	
parameters	emerging	from	micro-connectomic	analysis	describe	some	essential	features	of	
the	organization	of	neural	networks.	The	numerical	tractability	and	generalizability	of	graph	
theoretical	 analysis	 makes	 it	 suitable	 for	 analysis	 of	 big	 datasets,	 a	 feature	 that	 will	 be	
increasingly	 important	 as	 experimental	 detailed	 data	 on	 larger	 neuronal	 networks	 at	
synaptic	resolution	become	available	in	future.		
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Box	1	|	Graph	theory.	The	starting	point	for	all	graph	theoretical	analysis	is	the	definition	of	
nodes	 and	edges;	 see	REF207	 for	 an	 introductory	 text.	 For	micro-connectomes,	 a	node	will	
typically	 represent	 a	 specific	 neuron,	 and	 an	 edge	 a	 synaptic	 or	 gap-junction	 connection	
between	 two	 neurons.	Most	 commonly	 used	 graph	 theoretical	 metrics	 are	 calculated	 on	
undirected	 connectivity.	 The	degree	 (k)	 simply	 describes	 how	many	 edges	 connect	 to	 one	
node	 i.	 The	 degree	 distribution	 P(k)	 allows	 comparison	 of	 overall	 network	 structure	 to	
models,	such	as	random,	regular	or	scale-free	networks.	Nodes	with	a	high	degree	are	often	
referred	to	as	hubs.	 	A	pervasive	and	well-studied	organizational	 feature	 is	the	community	
structure,	or	modularity,	of	a	network.	 It	describes	how	well	a	network	can	be	partitioned	
into	 communities	 and	 numerous	 methods	 and	 many	 algorithms	 for	 modular	 partitioning	
have	been	developed208.	A	hierarchically	nested	modular	structure	across	spatial	scales	has	
been	referred	to	as	the	hallmark	of	complex	systems209.	Connectivity	of	hub	nodes	may	play	
a	 role	 in	 integrating	 between	 different	 communities	 of	 a	 network;	 hubs	 may	 also	 be	
organized	 in	 a	 rich-club	 –	 a	 network	 core	 component	 that	 is	 significantly	 more	 inter-
connected	 than	 the	high	degree	nodes	of	 a	 comparable	 random	network.	 The	 topological	
distance	 between	 a	 pair	 of	 nodes	 i	 and	 j	 can	 be	 estimated	 by	 the	 path	 length,	 i.e.	 the	
minimal	number	of	synapses	that	need	to	be	traversed	to	connect	node	i	to	j.	The	inverse	of	
the	 average	 shortest	 path	 length	 of	 nodes	 has	 been	 proposed	 as	 a	 measure	 of	 the	
topological	 efficiency	 of	 a	 network.	 A	 measure	 of	 the	 local	 efficiency	 of	 a	 node	 is	 the	
clustering	coefficient.	It	gained	particular	prominence	in	the	formalization	of	the	small-world	
property33.	Expanding	on	traditional	approaches	to	assess	networks,	the	multi-layer	network	
framework	includes	not	just	one,	but	multiple	types	of	relationships	among	neuronal	nodes,	
e.g.	 chemical	 synapses,	 electrical	 gap	 junctions	 and	 extra-synaptic	 neuromodulatory	
interactions.	 Furthermore,	 a	 better	 integration	 of	 classical	 circuit	 motifs,	 involving	
combinations	 of	 both	 excitatory	 and	 inhibitory	 neurons,	 will	 be	 required	 to	 link	 micro-
connectomic	topology	to	physiological	function.	
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Box	 2	 |	 Cell-type	 specific	 connectivity.	 A	 large	 body	 of	 evidence	 suggests	 that	 the	
probability	of	a	connection	between	two	neurons	depends	on	the	pre-	and	postsynaptic	cell	
type77,210–212.	 In	 the	 cortex,	 two	 broad	 classes	 of	 neurons	 can	 be	 distinguished:	projection	
neurons	 (PNs)	 and	 local-circuit	 interneurons	 (INs).	 PNs	 comprise	 about	 80%	 of	 all	 cortical	
neurons;	 they	use	the	excitatory	neurotransmitter	glutamate	 for	signaling	and	make	up	to	
several	 thousands	 of	 synaptic	 connections	 to	 other	 neurons	 of	 their	 class.	 Many	 of	 the	
axonal	 projections	 to	 other	 projection	 neurons	 are	 long	 distance	 (up	 to	 80%	 of	 synapses	
onto	 V1	 PN	 dendrites	 come	 from	 neurons	 >200	 μm	 apart213).	 PNs	 also	 make	 local	
connections	to	their	neighbouring	cells.	The	remaining	20%	of	cortical	neurons	are	INs.	Inter-
neuronal	 efferent	 connectivity	 is	 mainly	 local	 and	 most	 INs	 release	 the	 inhibitory	
neurotransmitter	GABA.	 A	 common	 result	 from	patch-clamp	 recordings	 is	 a	 relatively	 low	
local	 connectivity	 among	 PNs.	 For	 example,	 the	 PN	 connectivity	 rate	 estimated	 by	 patch-
clamp	 recordings	 in	 slices	 of	 L2/3	 rat	 somatosensory	 and	 visual	 cortex	 decreased	 as	 a	
function	of	distance	from	≈10%	for	cells	in	close	proximity	(<25	μm)	to	a	rate	of	<1%	for	PNs	
more	 than	200	μm	apart98.	Connectivity	 in	 slices	of	 L5	 rat	 somatosensory	cortex	has	been	
reported	 to	 decay	 from	 ≈20%	 for	 nearby	 neurons	 to	 less	 than	 5%	 for	 neurons	 >200	 μm	
apart100.	Connectivity	of	L2	primary	somatosensory	cortex	(S1)	PNs	was	also	sparse	in	vivo214.	
Local	 connectivity	 in	 L2/3	 in	 V1	 ranged	 between	 10%	 and	 20%	 in	 both	 rat131	 and	
mouse101,105.	 PN	 connectivity	 likely	 depends	on	 intersomatic	 orientation	of	 cells140,	 on	 the	
cortical	 layer,	 and	 from	where	 they	 receive	 their	 input	 or	 send	 their	 outputs215.	 Evidence	
indicated	 that	 PNs	 are	 preferentially	 connected	 if	 they	 receive	 common	 inter-	 and	 intra-
laminar	 input216	 and	 if	 they	 share	 similar	 receptive	 fields101,105.	 EM	 reconstruction	 showed	
that	PN	connectivity	in	V1	L2/3	is	more	likely	if	cells	share	similar	orientation	preferences141.	
New	transgenic	mouse	lines	that	express	specific	fluorescent	genetic	markers	have	made	it	
feasible	 to	 differentiate	 INs	 broadly	 into	 largely	 non-overlapping	 subclasses:	 parvalbumin-
expressing	(PV+),	somatostatin-expressing	(SOM+)	and	serotonin	receptor	5HT3a	-expressing	
(5HT3aR+)	INs.	Together,	PV+,	SOM+	and	5HT3aR+	INs	account	for	almost	100%	of	all	cortical	
INs217.	 In	 combination	 with	 knowledge	 on	 the	 innervation	 sites	 of	 INs,	 predictions	 about	
specific	 computational	 roles	 and	 circuit	 functions	 become	 feasible81,218.	 Combining	
optogenetic	 stimulation	 and	 whole-cell	 recordings,	 studies	 have	 started	 to	 map	 IN	
connectivity	 rates	 within	 and	 between	 IN	 sub-classes	 and	 to	 PNs.	 In	 L2/3	 and	 L5	 visual	
cortex219,220	and	L2/3	in	S1221,	studies	found	a	high	connectivity	among	PV+	INs.	In	contrast,	
few	 or	 no	 chemical	 synapses	 have	 been	 observed	 among	 SOM+	 INs219,222.	 Similarly,	 intra-
class	 connectivity	 among	 VIP+	 INs,	 a	 subgroup	 of	 5HT3aR	 INs,	 is	 sparse.	 Between-class	
connectivity	has	also	been	examined	and	a	connectivity	scheme	from	VIP+	to	SOM+	and	PV+	
INs	to	control	disinhibition	of	local	PNs	has	recently	gained	attention220,223,224.	Interestingly,	
the	 same	 connectivity	 scheme	 was	 replicated	 across	 different	 cortical	 regions225.	 High	
synaptic	connectivity	has	been	reported	for	the	inputs	from	PNs	onto	PV+	INs	in	V198,216,226,	
with	more	moderate	connectivity	for	the	inputs	from	PNs	onto	VIP+	and	SOM+	INs	in	V1	and	
S1220.	In	vivo	patch-clamp	recordings	in	L2/3	barrel	cortex149	have	largely	confirmed	in	vitro	
connectivity	rates	from	PNs	to	PV+	INs	221	and	SOM+	INs227.	 	
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Figure	1	Complex	 topological	properties	of	 the	C.	elegans	connectome.	 	 a	|	The	nervous	
system	of	the	nematode	C.	elegans	represents	the	first	whole-animal	connectome	at	cellular	
resolution.	 It	 was	 reconstructed	 by	 serial-section	 electron	 microscopy	 (EM)	 and	 post-hoc	
manual	 tracing	 in	 the	 1980s5.	 The	 panel	 depicts	 an	 updated	 version	 of	 the	 originally	
published	connectivity	matrix	between	a	subset	of	279	neurons,	including	chemical	synapses	
(red)	and	gap	 junctions	 (blue)6;	 the	matrix	 is	 reordered	according	to	three	main	 functional	
classes	of	neurons:	 sensory	neurons,	 interneurons	and	motor	neurons.	b	 |	 The	C.	elegans	
connectome	obeys	Rents’	rule31;	i.e.	the	network	demonstrates	a	fractal	scaling	relationship	
between	the	number	of	connections	(e)	to	a	set	of	neurons	and	the	number	of	neurons	in	
the	set	(n).	Rentian	scaling	was	initially	introduced	to	assess	the	physical	embedding	of	very	
large-scale	 integrated	 (VLSI)	 computer	 chips;	 physical	 Rentian	 scaling	 in	 connectivity	 of	C.	
elegans	 has	 been	 interpreted	 as	 evidence	 for	 an	 economical	 spatial	 embedding.	 c	 |	
Modeling	studies	found	that	the	principles	of	wiring	cost	minimization	are	a	good	predictor	
of	the	actual	position	of	neurons	in	the	C.	elegans	connectome44.	Depicted	is	the	correlation	
between	 the	 actual	 neuronal	 positions	 and	 the	 positions	 predicted	 by	 a	 wiring-cost	
minimization	model.	For	a	perfect	match,	neurons	would	fall	on	the	diagonal.	As	depicted,	
some	neurons	clearly	deviate	from	the	rule	(AVG,	PVP	and	PVQ);	in	particularly	the	position	
of	some	command	interneurons	and	pioneer	neurons	cannot	be	predicted	well.	 d	|	Highly	
connected	 interneurons	 of	 the	 locomotor	 circuit	 of	 C.	 elegans	 form	 a	 rich-club37.	 This	
network	core	may	facilitate	integration	between	different	functional	modules	of	the	nervous	
system	through	topological	 shortcuts.	Experiments	demonstrated	that	neurons	 in	 the	rich-
club	 are	 of	 great	 functional	 importance	 for	 coordinated	movement	 and	 flexible	 switching	
between	 different	 network	 states49.	 e	 |	 Distribution	 of	 connection	 distances	 of	 the	 C.	
elegans	 connectome37,	 grouped	 into	 three	 different	 classes:	 rich-club,	 feeder	 and	 local	
edges.	 Rich-club	 neurons	 comprise	 a	 very	 large	 proportion	 of	 the	 long-range	 connections	
(rich-club	edges,	black);	feeder	edges	(grey),	which	connect	peripheral	neurons	to	rich-club	
neurons,	 and	 local	 edges	 (white),	 which	 connect	 only	 peripheral	 neurons,	 demonstrate	
generally	lower	connection	lengths.	Panel	a	is	reproduced,	with	permission,	from	REF.6;	part	
b	 is	 adapted	 and	 modified,	 with	 permission,	 from	 REF.31;	 panel	 c	 is	 modified,	 with	
permission,	from	REF.44;	part	d	is	adapted,	with	permission,	from	REF.37;	part	e	is	modified,	
with	permission,	from	REF.37.	
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Figure	 2	 Linking	 network	 structure	 and	 functional	 dynamics.	 	 a	 |	Network	 	motifs	may	
facilitate	 efficient	 information	 processing.	 (i)	 Using	 optogenetic	 stimulation	 in	 olfactory	
receptor	 neurons	 (ORNs)	 and	 electrophysiological	 recordings	 across	multiple	 layers	 of	 the	
Drosophila	olfactory	system,	a	recent	study	tested	the	potential	effects	of	pathway	motifs67.	
Schematic	 depicts	 the	 simplified	 circuitry	 of	 a	 single	 glomerulus,	 where	 optogenetically	
induced	 signals	 from	 ORNs	 first	 diverge	 and	 converge	 onto	 six	 postsynaptic	 projection	
neurons	 (PNs);	 the	 PNs	 later	 reconverge	 onto	 specific	 higher-order	 lateral	 horn	 neurons	
(LHNs).	Results	 indicate	that	convergence,	divergence,	and	reconvergence	motifs	 rendered	
the	 signal	 progressively	more	 informative.	 (ii)	 Potential	 synergistic	 effects	 through	 a	 feed-
forward	convergence	and	 reconvergence	pathway	have	also	been	proposed	by	a	 study	on	
multimodal	 action	 selection	 in	 Drosophila	 larva68.	 Depicted	 is	 a	 summary	 of	 the	
reconstructed	multilevel	multimodal	 convergence	 brain	 pathway	 for	 rolling	 in	 the	 larva68.	
Signal	 from	 nociceptive	 (orange)	 and	mechanosensory	 neurons	 (green)	 first	 converges	 on	
first-order	 multi-sensory	 interneurons	 (blue)	 that	 integrate	 the	 input;	 these	 interneurons	
converge	again	at	later	processing	stages	(second-order	(yellow)	and	third-order	(magenta)	
projection	neurons)	before	the	signal	reaches	the	nerve	cord68.	(iii)	Hubs	represent	another	
topological	feature	that	can	provide	integration	of	information	across	the	network.	The	gap	
junction	hubs	of	 the	C.	elegans	 ‘hub-and-spoke’	 circuit,	RMG	 (green	polygon),	 are	densely	
connected	with	 various	 sensory	 neurons	 (red	 triangles)	 and	mediate	 different	 behaviours,	
depending	 on	 the	 neuromodulatory	 state	 (arrows	 indicate	 synaptic	 connections;	 gap	
junctions	are	depicted	as	 resistor	symbols)10,46.	b	 |	Upper	panel	 (i)	depicts	 the	normalized	
ΔF/F	 calcium	 fluorescence	 time	 series	 from	 109	 head	 neurons	 of	 a	 freely	 moving	 C.	
elegans54.	After	decomposing	the	data	using	a	principal	component	analysis	(PCA),	patterns	
of	network	activity	could	be	linked	to	specific	action	sequences.	The	lower	panels	show	two	
phase	plots	with	the	first	two	principal	components	(PC1	and	PC2)	derived	from	the	network	
activity;	either	color-coded	for	six	different	activity	states	(ii),	or	for	increases	in	Ca2+	activity	
of	 three	 selected	 neurons	 (iii).	 c	 |	 Selective	 optogenetic	 stimulation	 of	 C.	 elegans	 RMG	
neurons	expressing	channelrhodopsin-2	induces	rapid	changes	in	behavioural	state,	such	as	
persistent	forward	movement46.	The	panel	depicts	stimulation	during	two	different	oxygen	
conditions	 (red:	 21%	 oxygen;	 blue:	 7%	 oxygen);	 the	 worm	 generally	 tries	 to	 avoid	
environments	with	high	oxygen	and	 therefore	demonstrates	a	higher	arousal	 level	 at	21%	
oxygen.	Combining	connectomics	with	insight	from	targeted	stimulation	at	the	level	of	single	
neurons	 (Panel	 c),	 and	whole-brain	 cellular	 imaging	 (Panel	 b)	will	 enable	 development	 of	
integrative	models	 for	 how	 neuronal	 structure,	 function	 and	 behaviours	 are	 linked	 in	 the	
worm.	 d	 |	 Schematic	 of	 a	 stochastic	 neuronal	 model	 to	 simulate	 random	 search	 in	 C.	
elegans49.	 The	model	 was	 informed	 by	 connectome	 data	 on	 the	 locomotor	 circuit	 of	 the	
worm,	whose	 forward	 (F)	 and	 reverse	 (R)	 command	 neuron	 units	 are	 connected	 through	
reciprocal	 inhibition.	The	activation	state	of	each	unit	 is	 indicated	by	a	colour	combination	
(pink	indicates	that	the	unit	is	active).	If	F	and	R	units	are	conjointly	active	(or	inactive)	the	
animal	pauses	(X,	Y).	Figures	in	panel	a	modified,	with	permission,	from	REF.11,67,68;	panels	
in	 part	b	modified,	with	permission,	 from	REF.54;	 panel	 c	 is	 reproduced,	with	permission,	
from	REF.46;	panel	d	is	modified,	with	permission,	from	REF.49.	
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Figure	 3.	 Fractal	 neuronal	 arborization	 and	motifs	 in	mammalian	 local	 connectivity.	 a	 |	
Fundamental	 aspects	 of	 neuronal	 arborization	 have	 been	 linked	 to	principles	 to	 conserve	
cellular	 cytoplasm	and	 conduction	 time,	 reminiscent	of	Ramón	y	Cajal’s	 conservation	 laws	
for	 space,	 time	 and	 material85,88.	 The	 panel	 illustrates	 schematically	 four	 hypothetical	
dendritic	arbor	designs:	whereas	‘compact’	branching	(i)	balances	conduction	time	cost	and	
dendritic	path	length,	designs	depicted	in	panel	ii-iv	are	suboptimal.	Either	they	demonstrate	
excessive	time	costs	(ii),	or	their	propensity	for	synaptic	contacts	is	too	low	(iii)	or	high	(iv).	b	
|	 Branching	 patterns	 can	 be	 predicted	 from	 the	 principles	 of	 wiring	 cost	 minimization.	
Depicted	 is	 the	 scaling	 relationship	 between	 total	 dendritic	 length	 (L)	 and	 the	 number	 of	
dendritic	 branch	 points	 (n)	 of	 morphologically	 reconstructed	 neuronal	 arbors	 (each	 dot	
represents	one	neuron;	colours	represent	different	neuron	types),	as	well	as	the	relationship	
among	 these	 parameters	 predicted	 by	 a	 minimum-spanning	 tree	 (MST)	 model	 88.	 c	 |	
Synaptic	 connectivity	 matrix	 derived	 by	 EM	 reconstruction	 of	 201	 excitatory	 neurons	 of	
mouse	 L2/3	 visual	 cortex141.	 Connectivity	 is	 reordered	 to	 represent	 its	 modular	 clustered	
community	structure;	connectivity	was	more	likely	for	excitatory	neurons	that	shared	similar	
orientation	preference.	d	|	A	lognormal	distribution	of	synaptic	weights,	here	quantified	as	
unitary	excitatory	postsynaptic	potentials,	has	been	found	in	local	connectivity	of	the	visual	
cortex	of	 the	rat131	and	the	mouse	barrel	cortex99.	e	|	Putative	monosynaptic	connectivity	
derived	from	electrophysiological	recordings	in	rat	medial	prefrontal	cortex	during	a	T-maze	
working	 memory	 task228.	 Pyramids	 depict	 pyramidal	 neurons,	 circles	 INs,	 boxes	 depict	
neurons	 that	 could	 not	 been	 defined;	 arrows	 represent	 excitatory	 connections,	 crossbars	
indicate	inhibitory	connections.	Neuronal	firing	was	behaviour	and	position-selective;	colors	
indicate	 whether	 firing	 rates	 of	 individual	 neurons	 could	 be	 linked	 to	 specific	 T-maze	
positions	 on	 either	 left	 (blue),	 right	 (red)	 or	 left	 and	 right	 (magenta)	 trajectories.	 Inferred	
connectivity	 is	 locally	 clustered;	 some	 neurons	 demonstrate	 hub-like	 features.	 Panel	 a	 is	
reproduced	 and	 modified,	 with	 permission,	 from	 REF.87;	 panel	 b	 is	 reproduced,	 with	
permission,	 from	REF.88;	panel	c	 is	 reproduced,	with	permission,	 from	REF.141;	panel	d	 is	
reproduced,	 with	 permission,	 from	 REF.97;	 panel	 e	 is	 reproduced,	 with	 permission,	 from	
REF.228.	
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Figure	4.	Growth	and	maintenance	of	micro-connectomes.		a	|	Long-term	in	vivo	imaging	of	
adult-born	 dentate	 gyrus	 granule	 cells	 (DGCs)	 in	mouse	 allows	 an	 analysis	 of	 cell-intrinsic	
and	 extrinsic	 factors	 on	 the	 branching	 structure	 of	 developing	 dendrites229.	 Depicted	 are	
new-born	DGCs,	which	were	labelled	with	a	specific	GFP-expressing	retro-virus	and	imaged	
from	 day	 post	 injection	 (dpi)	 15	 onwards.	 Reconstructions	 demonstrate	 how	 dendrites	
undergo	overgrowth	and	pruning	over	time	(green	indicates	that	a	new	branch	was	added;	
yellow	indicates	that	a	branch	was	pruned;	branches	that	were	added	and	pruned	between	
imaging	sessions	are	coloured	purple).		b	|	Development	of	neuronal	network	topology	has	
been	studied	by	electrophysiological	recordings	from	multi-electrode	arrays	(MEAs)	in	vitro.	
MEA	recordings	can	be	used	 to	 record	spontaneous	activity	of	neurons	growing	 in	culture	
and	to	analyse	the	emergent	spatiotemporal	patterns	of	functional	connectivity	developing	
over	 several	 weeks	 or	 months.	 Emergence	 of	 topological	 features,	 such	 as	 a	 small-world	
organization	and	a	 rich-club	 structure	have	been	 reported	 (in	Panel	b	 electrodes	with	 red	
circles	 depict	 nodes	 that	 have	 been	 classified	 as	 rich-club	 nodes;	 lower	 panel	 depicts	
network	development	from	days	in	vitro	(DIV)	14	to	24)107,126.	The	advent	of	more	complex	
tissue	 culturing	 systems,	 in	 particular	 3D	 culturing	 scaffolds,	 such	 as	 cerebral	 organoids	
grown	from	human	pluripotent	stem	cells230,	as	well	as	 recording	platforms	that	allow	the	
study	 of	 neuronal	 networks	 at	 sub-cellular	 resolution231,	 will	 provide	 important	
complementary	 insight	 into	network	function	and	principles	that	drive	the	development	of	
neuronal	 topology.	 c	 |	 Emergence	 of	 complex	 neuronal	 network	 structure	 has	 also	 been	
modelled	using	computational	growth	simulations	in	silico232.	Depicted	are	artificial	neurons	
that	 grow	over	 several	 days	 (4,	 8,	 16)	 following	 local	 rules	 that	 approximate	 some	of	 the	
more	 established	 dynamics	 in	 neurite	 outgrowth	 and	 branching	 (axons	 and	 dendrites	 are	
depicted	in	green,	respectively	blue).	Panel	in	a	 is	adapted,	with	permission,	from	REF.229;	
panel	b	is	reproduced	and	modified,	with	permission,	from	REF.107,	and	panel	c	is	modified,	
with	permission,	from	REF232.		
	
	
	
	
	
	 	



	 23	

Glossary	
	
Centrality	A	general	term	for	the	topological	importance	of	a	node	in	the	network.	Centrality	
can	be	quantified	in	many	ways	including	the	degree	and	closeness	of	each	neuron.	
	
Clustering	 coefficient	 The	 clustering	 coefficient	 of	 a	 node	 is	 calculated	 as	 the	 fraction	 of	
triangular	 connections	 between	 a	 node’s	 nearest	 neighbours	 divided	 by	 the	 maximal	
possible	number	of	such	connections.	
	
Connectome	Abstract	network	 representation	of	 the	 connections	between	neurons	 in	 the	
whole	nervous	system	or	parts	of	a	nervous	system.	
	
Core	Subset	of	nodes	in	the	network,	which	is	highly	interconnected	and	contributes	to	the	
global	integrity	of	the	network.		
	
Cost	 Used	 as	 an	 umbrella	 term	 for	 biological	 pressures	 and	 expenditures	 (metabolism,	
material,	 etc.)	 that	 are	 incurred	 during	 development	 and	 maintenance	 of	 neuronal	
networks.	 Long-range	 connections,	 for	 example,	 are	 costly	 because	 their	 myelination	
requires	a	lot	of	cellular	material.		
	
Degeneracy	Describes	 the	 property	 of	 a	 system	 in	which	 different	 structural	 components	
can	give	rise	to	very	similar	functions.	
	
Economy,	economical	Used	here	to	describe	the	trade-off	between	the	biological	cost	and	
the	functional	value	of	topologically	complex	networks.			
	
Efficiency	(topological)	Metric	of	network	integration	that	is	calculated	as	the	inverse	of	the	
average	shortest	path	of	a	network.	
	
Fractal	 dimension	A	measure	of	 the	extent	 to	which	a	self-similar	process,	 like	a	dendritic	
tree,	 completely	 occupies	 the	 3D	 space	 available:	more	 intricately	 branching	 arborization	
will	have	higher	fractal	dimension	indicating	greater	space	occupancy.	
	
Fuzzy	 organization	 Refers	 to	 network	 components	 that	 belong	 not	 exclusively	 to	 a	 single	
module,	but	are	part	of	multiple,	potentially	overlapping	communities.	
	
Genetic	fate	mapping	Relating	the	statistics	of	mature	cellular	connectivity	to	neuronal	birth	
dates	or	embryonic	origin.	
	
Graph	theory	The	mathematical	analysis	of	graphs	comprising	nodes	and	edges.	Graphs	can	
have	directed	or	undirected,	weighted	or	un-weighted	edges.	
	
Homology	 The	 conservation	of	 organizational	 pattern	between	 species	or	 across	different	
structures	within	an	organism.		
	
Hub	Node	with	a	high	degree	of	connectivity	to	other	nodes	in	the	network	and	which	is	of	
high	importance	to	the	integrity	of	the	network.	
	



	 24	

Minimum-spanning-tree	An	undirected	graph,	which	connects	all	nodes	in	the	network	with	
the	minimum	number	of	connections.	
	
Modularity	The	property	that	a	network	can	be	decomposed	into	groups	of	nodes	which	are	
densely	 inter-connected	 to	 each	 other,	 but	 only	 sparsely	 connected	 to	 nodes	 in	 other	
modules.	
	
Morphospace	 The	 low-dimensional	 space	 of	 network	 phenotypes	 observed	 in	 natural	
populations	and	simulated	by	generative	models	of	network	development	and	evolution.				
	
Motif	A	pattern	of	connectivity	between	a	few	(typically	<	10)	nodes.	Some	motifs	are	over-
represented	 in	connectomes.	For	example,	 the	closed	triangular	motif	between	3	nodes	 is	
typical	of	highly	clustered	neuronal	networks.	
	
Multiplexity	Refers	to	the	existence	of	more	than	one	type	of	edge	between	network	nodes.	
Micro-connectomes	are	multiplex	because	there	are	at	least	chemical	synaptic,	gap	junction	
and	extra-synaptic	neuromodulatory	connections	between	neurons.			
	
Peters’s	rule	The	assumption	that	synaptic	connectivity	can	be	inferred	from	the	overlap	of	
axons	and	dendrites.	
	
Preferential	attachment	rule	A	generative	model	or	growth	rule	for	the	formation	of	scale-
free	networks.	During	development,	new	nodes	are	more	likely	to	connect	to	hub	nodes	that	
already	have	high	degree	and	many	connections	to	other	nodes.	It	is	often	referred	to	as	the	
‘rich-get-richer’	rule.	
	
Receptive	 field	 The	 domain	 of	 a	 sensory	 space	 that	 can	 stimulate	 electrical	 activity	 of	 a	
neuron.	
	
Retinotopy,	 retinotopic	 mapping	 A	 common	 feature	 found	 in	 visual	 cortical	 areas,	which	
describes	the	spatially	ordered	mapping	of	visual	inputs	from	the	retina	to	cortical	neurons.		
	
Rich-club	A	 topologically	 integrative	 network	 feature	 that	 comprises	 greater-than-random	
connectivity	between	a	relatively	small	number	of	high	degree	hubs.	A	rich	club	is	linked	by	
feeder	connections	to	a	large	number	of	more	peripheral	and	sparsely	connected	nodes.	
	
Scale-free	A	class	of	complex	networks	defined	by	a	heavy	tailed	degree	distribution	that	can	
be	approximated	by	a	power-law.	High	degree	hubs	have	a	higher	probability	 in	scale-free	
networks	than	in	comparable	random	graphs.	
	
Small-world,	small-worldness	A	metric	of	global	network	complexity.	Compared	to	random	
graphs,	small	world	networks	have	high	clustering	but	approximately	equivalent	path	length.	
	
Sparse	coding	A	parsimonious	neuronal	signalling	strategy	that	requires	only	a	small	set	of	
active	neurons	to	encode	an	item.	
	
Synaptic	 clustering	 The	 concept	 that	 functionally	 correlated	 synaptic	 inputs	 on	 dendritic	
branches	are	also	spatially	co-located.	
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Topology	Mathematics	of	the	pattern	of	connections	between	elements,	regardless	of	their	
organization	in	physical	space.	
	
Topographic	mapping	Anatomical	co-location	of	neurons	with	similar	receptive	fields.	
	
Transfer	 entropy	 An	 information	 theoretic	measure	 for	 the	 directed	 interaction	 between	
two	time	series;	 it	measures	the	information	that	the	past	of	a	variable	 I	 (source)	provides	
about	 the	 current	 value	 of	 another	 variable	 J	 (target),	 in	 addition	 to	 the	 information	
provided	by	the	past	of	J	alone233.	
	
Tree	A	connected	graph	without	cycles	or	closed	loops.	
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Key	points	
	

• Micro-connectomics	 provides	 a	 promising	 approach	 to	 studying	 the	wiring	 rules	 of	
neuronal	network	organization	at	the	cellular	scale	and	eventually	to	develop	models	
of	neuronal	function.		

• Analysis	 of	 fully	 reconstructed	 nervous	 systems	 demonstrates	 that	 micro-
connectomes	are	often	governed	by	wiring	economy	principles,	such	as	to	conserve	
space,	time	and	material.	

• Pioneering	 work	 from	 patch-clamp	 recordings	 and	 electron	 microscopic	
reconstruction	 in	 the	 mammalian	 brain	 indicates	 that	 generic	 motifs	 in	 neuronal	
network	organization	translate	across	scales	and	species.		

• Understanding	 of	 the	 specific	 functional	 implications	 of	 neuronal	 topology	 will	
require	 a	 systematic	 integration	 of	 connectomes	with	 behavioural	 data,	 functional	
imaging,	and	insights	into	development	of	cells	and	connectivity.		
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