70 research outputs found
Euthanasia-related strain and coping strategies in animal shelter employees
Objective—To identify and evaluate coping strategies advocated by experienced animal shelter workers who directly engaged in euthanizing animals.
Design—Cross-sectional study.
Sample Population—Animal shelters across the United States in which euthanasia was conducted (5 to 100 employees/shelter).
Procedures—With the assistance of experts associated with the Humane Society of the United States, the authors identified 88 animal shelters throughout the United States in which animal euthanasia was actively conducted and for which contact information regarding the shelter director was available. Staff at 62 animal shelters agreed to participate in the survey. Survey packets were mailed to the 62 shelter directors, who then distributed them to employees. The survey included questions regarding respondent age, level of education, and role and asked those directly involved in the euthanasia of animals to provide advice on strategies for new euthanasia technicians to deal with the related stress. Employees completed the survey and returned it by mail. Content analysis techniques were used to summarize survey responses.
Results—Coping strategies suggested by 242 euthanasia technicians were summarized into 26 distinct coping recommendations in 8 categories: competence or skills strategies, euthanasia behavioral strategies, cognitive or self-talk strategies, emotional regulation strategies, separation strategies, get-help strategies, seek long-term solution strategies, and withdrawal strategies.
Conclusions and Clinical Relevance—Euthanizing animals is a major stressor for many animal shelter workers. Information regarding the coping strategies identified in this study may be useful for training new euthanasia technicians
Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription
Materials in particulate form for tissue engineering. 1 Basic concepts
For biomedical applications, materials small in size are growing in importance. In an era where
‘nano’ is the new trend, micro- and nano-materials are in the forefront of developments. Materials in
the particulate form aim to designate systems with a reduced size, such as micro- and nanoparticles.
These systems can be produced starting from a diversity of materials, of which polymers are the
most used. Similarly, a multitude of methods are used to produce particulate systems, and both
materials and methods are critically reviewed here. Among the varied applications that materials
in the particulate form can have, drug delivery systems are probably the most prominent, as these
have been in the forefront of interest for biomedical applications. The basic concepts pertaining
to drug delivery are summarized, and the role of polymers as drug delivery systems conclude this
review
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils.
Neutrophils enter sites of infection, where they can eliminate pathogenic bacteria in an oxidative manner. Despite their predominance in active tuberculosis lesions, the function of neutrophils in this important human infection is still highly controversial. We observed that virulent Mycobacterium tuberculosis survived inside human neutrophils despite prompt activation of these defence cells' microbicidal effectors. Survival of M. tuberculosis was accompanied by necrotic cell death of infected neutrophils. Necrotic cell death entirely depended on radical oxygen species production since chronic granulomatous disease neutrophils were protected from M. tuberculosis-triggered necrosis. More, importantly, the M. tuberculosis ΔRD1 mutant failed to induce neutrophil necrosis rendering this strain susceptible to radical oxygen species-mediated killing. We conclude that this virulence function is instrumental for M. tuberculosis to escape killing by neutrophils and contributes to pathogenesis in tuberculosis
Two-Phase Synthesis of (−)-Taxuyunnanine D
The first successful effort to replicate
the beginning of the Taxol
oxidase phase in the laboratory is reported, culminating in the total
synthesis of taxuyunnanine D, itself a natural product. Through a
combination of computational modeling, reagent screening, and oxidation
sequence analysis, the first three of eight C–H oxidations
(at the allylic sites corresponding to C-5, C-10, and C-13) required
to reach Taxol from taxadiene were accomplished. This work lays a
foundation for an eventual total synthesis of Taxol capable of delivering
not only the natural product but also analogs inaccessible via bioengineering
Two-Phase Synthesis of (−)-Taxuyunnanine D
The first successful effort to replicate
the beginning of the Taxol
oxidase phase in the laboratory is reported, culminating in the total
synthesis of taxuyunnanine D, itself a natural product. Through a
combination of computational modeling, reagent screening, and oxidation
sequence analysis, the first three of eight C–H oxidations
(at the allylic sites corresponding to C-5, C-10, and C-13) required
to reach Taxol from taxadiene were accomplished. This work lays a
foundation for an eventual total synthesis of Taxol capable of delivering
not only the natural product but also analogs inaccessible via bioengineering
- …