3,163 research outputs found

    Factors supporting and preventing academics from becoming lifelong learners

    Get PDF
    In present circumstances, it has become inevitable for individuals to continue obtaining new information and skills throughout their lives. Having learned to learn and information literate individuals are able to meet their learning needs both in career and personal terms by themselves. The important aspect is the individual feels the need to learn and knows how and where to meet these needs. Feeling those can be considered as the basic requirement to make efforts in order to meet them. However, the surrounding circumstances may support or prevent meeting these needs. Since the situation of being a lifelong learner will be examined based on the present working conditions, the study is designed as embedded multiple case study. Maximum variety is ensured in the study group by taking into account the various academic titles, gender, and fields of study. The interview form is developed based on the literature and revised according to the opinions of specialists. The data has been collected by doing individual interviews with academics and a content analysis has been performed. In conclusion of the analysis performed, such themes as the need to become lifelong learners, the factors supporting to become lifelong learners and the factors preventing from becoming lifelong learners have been reached. © 2018, Sciedu Press. All rights reserved

    Successive Refinement of Abstract Sources

    Get PDF
    In successive refinement of information, the decoder refines its representation of the source progressively as it receives more encoded bits. The rate-distortion region of successive refinement describes the minimum rates required to attain the target distortions at each decoding stage. In this paper, we derive a parametric characterization of the rate-distortion region for successive refinement of abstract sources. Our characterization extends Csiszar's result to successive refinement, and generalizes a result by Tuncel and Rose, applicable for finite alphabet sources, to abstract sources. This characterization spawns a family of outer bounds to the rate-distortion region. It also enables an iterative algorithm for computing the rate-distortion region, which generalizes Blahut's algorithm to successive refinement. Finally, it leads a new nonasymptotic converse bound. In all the scenarios where the dispersion is known, this bound is second-order optimal. In our proof technique, we avoid Karush-Kuhn-Tucker conditions of optimality, and we use basic tools of probability theory. We leverage the Donsker-Varadhan lemma for the minimization of relative entropy on abstract probability spaces.Comment: Extended version of a paper presented at ISIT 201

    Separate Source-Channel Coding for Broadcasting Correlated Gaussians

    Full text link
    The problem of broadcasting a pair of correlated Gaussian sources using optimal separate source and channel codes is studied. Considerable performance gains over previously known separate source-channel schemes are observed. Although source-channel separation yields suboptimal performance in general, it is shown that the proposed scheme is very competitive for any bandwidth compression/expansion scenarios. In particular, for a high channel SNR scenario, it can be shown to achieve optimal power-distortion tradeoff.Comment: 6 pages (with an extra proof), ISIT2011, to appea

    Wyner-Ziv Coding over Broadcast Channels: Digital Schemes

    Full text link
    This paper addresses lossy transmission of a common source over a broadcast channel when there is correlated side information at the receivers, with emphasis on the quadratic Gaussian and binary Hamming cases. A digital scheme that combines ideas from the lossless version of the problem, i.e., Slepian-Wolf coding over broadcast channels, and dirty paper coding, is presented and analyzed. This scheme uses layered coding where the common layer information is intended for both receivers and the refinement information is destined only for one receiver. For the quadratic Gaussian case, a quantity characterizing the overall quality of each receiver is identified in terms of channel and side information parameters. It is shown that it is more advantageous to send the refinement information to the receiver with "better" overall quality. In the case where all receivers have the same overall quality, the presented scheme becomes optimal. Unlike its lossless counterpart, however, the problem eludes a complete characterization

    Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems

    Get PDF
    In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local quadratic one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size (the one that takes us to the boundary). It appears that in order to obtain local superlinear convergence, we need to tighten the neighborhood of the central path proportionally to the current duality gapconic optimization problem, worst-case complexity analysis, self-concordant barriers, polynomial-time methods, predictor-corrector methods, local quadratic convergence

    Non-cobalent interactions between carbon nanotubes and conjugated polymers

    Get PDF
    Cataloged from PDF version of article.Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes
    corecore