29,230 research outputs found

    Darkness Within:...

    Get PDF

    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D

    Get PDF
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn--Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: the state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem

    Generalized gradient flow structure of internal energy driven phase field systems

    Get PDF
    In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals

    A degenerating PDE system for phase transitions and damage

    Full text link
    In this paper, we analyze a PDE system arising in the modeling of phase transition and damage phenomena in thermoviscoelastic materials. The resulting evolution equations in the unknowns \theta (absolute temperature), u (displacement), and \chi (phase/damage parameter) are strongly nonlinearly coupled. Moreover, the momentum equation for u contains \chi-dependent elliptic operators, which degenerate at the pure phases (corresponding to the values \chi=0 and \chi=1), making the whole system degenerate. That is why, we have to resort to a suitable weak solvability notion for the analysis of the problem: it consists of the weak formulations of the heat and momentum equation, and, for the phase/damage parameter \chi, of a generalization of the principle of virtual powers, partially mutuated from the theory of rate-independent damage processes. To prove an existence result for this weak formulation, an approximating problem is introduced, where the elliptic degeneracy of the displacement equation is ruled out: in the framework of damage models, this corresponds to allowing for partial damage only. For such an approximate system, global-in-time existence and well-posedness results are established in various cases. Then, the passage to the limit to the degenerate system is performed via suitable variational techniques

    Well-posed Vector Optimization Problems and Vector Variational Inequalities

    Get PDF
    In this paper we introduce notions of well-posedness for a vector optimization problem and for a vector variational inequality of differential type, we study their basic properties and we establish the links among them. The proposed concept of well-posedness for a vector optimization problem generalizes the notion of well-setness for scalar optimization problems, introduced in [2]. On the other side, the introduced definition of well-posedness for a vector variational inequality extends the one given in [13] for the scalar case.Keywords: vector optimization, vector variational inequality, well-posedness

    On a 3D isothermal model for nematic liquid crystals accounting for stretching terms

    Full text link
    The present contribution investigates the well-posedness of a PDE system describing the evolution of a nematic liquid crystal flow under kinematic transports for molecules of different shapes. More in particular, the evolution of the {\em velocity field} \ub is ruled by the Navier-Stokes incompressible system with a stress tensor exhibiting a special coupling between the transport and the induced terms. The dynamic of the {\em director field} \bd is described by a variation of a parabolic Ginzburg-Landau equation with a suitable penalization of the physical constraint |\bd|=1. Such equation accounts for both the kinematic transport by the flow field and the internal relaxation due to the elastic energy. The main aim of this contribution is to overcome the lack of a maximum principle for the director equation and prove (without any restriction on the data and on the physical constants of the problem) the existence of global in time weak solutions under physically meaningful boundary conditions on \bd and \ub
    • …
    corecore