879 research outputs found

    Normal form for travelling kinks in discrete Klein-Gordon lattices

    Full text link
    We study travelling kinks in the spatial discretizations of the nonlinear Klein--Gordon equation, which include the discrete ϕ4\phi^4 lattice and the discrete sine--Gordon lattice. The differential advance-delay equation for travelling kinks is reduced to the normal form, a scalar fourth-order differential equation, near the quadruple zero eigenvalue. We show numerically non-existence of monotonic kinks (heteroclinic orbits between adjacent equilibrium points) in the fourth-order equation. Making generic assumptions on the reduced fourth-order equation, we prove the persistence of bounded solutions (heteroclinic connections between periodic solutions near adjacent equilibrium points) in the full differential advanced-delay equation with the technique of center manifold reduction. Existence and persistence of multiple kinks in the discrete sine--Gordon equation are discussed in connection to recent numerical results of \cite{ACR03} and results of our normal form analysis

    Periodic travelling waves in convex Klein-Gordon chains

    Full text link
    We study Klein-Gordon chains with attractive nearest neighbour forces and convex on-site potential, and show that there exists a two-parameter family of periodic travelling waves (wave trains) with unimodal and even profile functions. Our existence proof is based on a saddle-point problem with constraints and exploits the invariance properties of an improvement operator. Finally, we discuss the numerical computation of wave trains.Comment: 12 pages, 3 figure

    Normalizations with exponentially small remainders for nonautonomous analytic periodic vector fields

    Full text link
    In this paper we deal with analytic nonautonomous vector fields with a periodic time-dependancy, that we study near an equilibrium point. In a first part, we assume that the linearized system is split in two invariant subspaces E0 and E1. Under light diophantine conditions on the eigenvalues of the linear part, we prove that there is a polynomial change of coordinates in E1 allowing to eliminate up to a finite polynomial order all terms depending only on the coordinate u0 of E0 in the E1 component of the vector field. We moreover show that, optimizing the choice of the degree of the polynomial change of coordinates, we get an exponentially small remainder. In the second part, we prove a normal form theorem with exponentially small remainder. Similar theorems have been proved before in the autonomous case : this paper generalizes those results to the nonautonomous periodic case

    Global sensitivity analysis of computer models with functional inputs

    Get PDF
    Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are applicable to computer codes with scalar input variables. This paper aims to illustrate different variance-based sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary meta-modeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The ``mean'' model allows to estimate the sensitivity indices of each scalar input variables, while the ``dispersion'' model allows to derive the total sensitivity index of the functional input variables. The proposed approach is compared to some classical SA methodologies on an analytical function. Lastly, the proposed methodology is applied to a concrete industrial computer code that simulates the nuclear fuel irradiation

    Small divisor problem in the theory of three-dimensional water gravity waves

    Get PDF
    We consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity gg and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle 2θ2\theta between them. \newline Denoting by μ=gL/c2\mu =gL/c^{2} the dimensionless bifurcation parameter (LL is the wave length along the direction of the travelling wave and cc is the velocity of the wave), bifurcation occurs for μ=cosθ\mu =\cos \theta. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. "Diamond waves" are a particular case of such waves, when they are symmetric with respect to the direction of propagation.\newline \emph{The main object of the paper is the proof of existence} of such symmetric waves having the above mentioned asymptotic expansion. Due to the \emph{occurence of small divisors}, the main difficulty is the inversion of the linearized operator at a non trivial point, for applying the Nash Moser theorem. This operator is the sum of a second order differentiation along a certain direction, and an integro-differential operator of first order, both depending periodically of coordinates. It is shown that for almost all angles θ\theta , the 3-dimensional travelling waves bifurcate for a set of "good" values of the bifurcation parameter having asymptotically a full measure near the bifurcation curve in the parameter plane (θ,μ).(\theta ,\mu ).Comment: 119

    Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes

    Full text link
    A functional risk curve gives the probability of an undesirable event as a function of the value of a critical parameter of a considered physical system. In several applicative situations, this curve is built using phenomenological numerical models which simulate complex physical phenomena. To avoid cpu-time expensive numerical models, we propose to use Gaussian process regression to build functional risk curves. An algorithm is given to provide confidence bounds due to this approximation. Two methods of global sensitivity analysis of the models' random input parameters on the functional risk curve are also studied. In particular, the PLI sensitivity indices allow to understand the effect of misjudgment on the input parameters' probability density functions

    Global Sensitivity Analysis of Stochastic Computer Models with joint metamodels

    Get PDF
    The global sensitivity analysis method, used to quantify the influence of uncertain input variables on the response variability of a numerical model, is applicable to deterministic computer code (for which the same set of input variables gives always the same output value). This paper proposes a global sensitivity analysis methodology for stochastic computer code (having a variability induced by some uncontrollable variables). The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, non parametric joint models (based on Generalized Additive Models and Gaussian processes) are discussed. The relevance of these new models is analyzed in terms of the obtained variance-based sensitivity indices with two case studies. Results show that the joint modeling approach leads accurate sensitivity index estimations even when clear heteroscedasticity is present

    Latin hypercube sampling with inequality constraints

    Get PDF
    In some studies requiring predictive and CPU-time consuming numerical models, the sampling design of the model input variables has to be chosen with caution. For this purpose, Latin hypercube sampling has a long history and has shown its robustness capabilities. In this paper we propose and discuss a new algorithm to build a Latin hypercube sample (LHS) taking into account inequality constraints between the sampled variables. This technique, called constrained Latin hypercube sampling (cLHS), consists in doing permutations on an initial LHS to honor the desired monotonic constraints. The relevance of this approach is shown on a real example concerning the numerical welding simulation, where the inequality constraints are caused by the physical decreasing of some material properties in function of the temperature

    Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests

    Get PDF
    The estimation of variance-based importance measures (called Sobol' indices) of the input variables of a numerical model can require a large number of model evaluations. It turns to be unacceptable for high-dimensional model involving a large number of input variables (typically more than ten). Recently, Sobol and Kucherenko have proposed the Derivative-based Global Sensitivity Measures (DGSM), defined as the integral of the squared derivatives of the model output, showing that it can help to solve the problem of dimensionality in some cases. We provide a general inequality link between DGSM and total Sobol' indices for input variables belonging to the class of Boltzmann probability measures, thus extending the previous results of Sobol and Kucherenko for uniform and normal measures. The special case of log-concave measures is also described. This link provides a DGSM-based maximal bound for the total Sobol indices. Numerical tests show the performance of the bound and its usefulness in practice
    corecore