4,415 research outputs found

    Milky Way's Thick and Thin disk: Is there distinct thick disk?

    Get PDF
    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besancon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.Comment: 7 pages, no figure. To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalban, and M. Steffe

    Pregabalin: a range of misuse-related unanswered questions

    Get PDF
    © 2019 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.Peer reviewedFinal Published versio

    Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    Full text link
    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. [...] These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims. We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods. We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture supernovae (EC) and the magnetorotationally driven (MRD) supernovae scenario. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results. The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] < -2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenario that match the observations. Conclusions. With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenario in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic ratios in a [Ba/Fe] or [Sr/Ba] vs. [Fe/H] diagram.Comment: 14 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The effects of Population III stars and variable IMF on the chemical evolution of the Galaxy

    Full text link
    We studied the effects of a hypothetical initial stellar generation (PopIII) of only massive and very massive stars (VMS) on the chemical evolution of the Galaxy. We adopted the two-infall chemical evolution model of Chiappini et al. and tested several sets of yields for primordial VMS (Pair-Creation SNe), which produce different amounts of heavy elements than lower mass stars. We focused on the evolution of alpha-elements, C, N, Fe. The effects of PopIII stars on the Galactic evolution of these elements is negligible if a few generations of such stars occurred, whereas they produce different results from the standard models if they formed for a longer period. Also the effects of a more strongly variable IMF were discussed, making use of suggestions appeared in the literature to explain the lack of metal-poor stars in the Galactic halo with respect to model predictions. The predicted variations in abundances, SN rates, G-dwarf [Fe/H] distribution are here more dramatic and in contrast with observations; we concluded that a constant or slightly varying IMF is the best solution. Our main conclusion is that if VMS existed they must have formed only for a very short period of time (until the halo gas reached the threshold metallicity for the formation of very massive objects); in this case, their effects on the evolution of the studied elements was negligible also in the earliest phases. We thus cannot prove or disprove the existence of such stars on the basis of the available data. Due to their large metal production and short lives, primordial VMS should have enriched the halo gas beyond the metallicity of the most metal poor stars known in a few Myrs. This constrains the number of Pair-Creation SNe: we find that a number of 2-20 of such SNe occurred in our Galaxy depending on the stellar yields.Comment: 30 pages, 10 figures, accepted for publication in New Astronom

    FDI and trade: A Granger causality analysis in a heterogeneous panel

    Get PDF
    This paper will investigate the Granger causality between outward Foreign Direct Investment (FDI) and the exports of goods and services in 11 European countries from 1996 to 2008. Using a new method to evaluate causality in a heterogeneous panel, we find that the causal relationship from FDI to exports is homogeneous among the panel. However, we find strong evidence of a heterogeneity of the causal relationship from exports to FDI in our sample.Foreign direct investment, exports, Granger causality, heterogeneous panel

    Stellar Evolution in the Early Universe

    Full text link
    Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this paper, we describe the strong impact of rotation induced mixing and mass loss at very low ZZ. The strong mixing leads to a significant production of primary nitrogen 14, carbon 13 and neon 22. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z=0 for stars more massive than 60 solar masses. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and C12/C13. We calculated the weak s-process production induced by the primary neon 22 and obtain overproduction factors (relative to the initial composition, Z=1.e-6) between 100-1000 in the mass range 60-90.Comment: 8 pages, 4 figures, proceedings of IAU Symposium 255, "Low-Metallicity Star Formation: From the First stars to Dwarf Galaxies", L.K. Hunt, S. Madden & R. Schneider, ed