33,204 research outputs found

    Store Choice in the Emerging Indian Apparel Retail Market: an Empirical Analysis

    Get PDF
    Store Choice has been a subject of frequent research in the developed retail markets of the west. However, the retail sector in India has been largely fragmented and unorganized. However, the retail scenario in India is changing at a very brisk pace. Many international retailers entering India and many Indian retailers in the organized segment are coming up with stores all across the country, but a majority of these stores have merely transplanted western formats onto the Indian retail scene without actually evaluating the salience of various store attributes from the customer perspective. In light of this the purpose of this paper is to study the store choice criteria in the context of apparel retailing in India. Drawing from major global and Indian studies conducted in the past, this research has identified two dimensions, which in different combinations could create sustainable store choice and hence, store loyalty. These two dimensions are termed “loyalty drivers†and experience enhancersâ€.Consumer Behaviour

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Hellenism and the Shaping of the Byzantine Empire

    Get PDF

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Superfund Reauthorization: Impact on State Environmental Enforcement

    Get PDF
    Branch predictor (BP) is an essential component in modern processors since high BP accuracy can improve performance and reduce energy by decreasing the number of instructions executed on wrong-path. However, reducing the latency and storage overhead of BP while maintaining high accuracy presents significant challenges. In this paper, we present a survey of dynamic branch prediction techniques. We classify the works based on key features to underscore their differences and similarities. We believe this paper will spark further research in this area and will be useful for computer architects, processor designers, and researchers

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM
    corecore