807 research outputs found

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    Compact Tensor Pooling for Visual Question Answering

    Get PDF
    Performing high level cognitive tasks requires the integration of feature maps with drastically different structure. In Visual Question Answering (VQA) image descriptors have spatial structures, while lexical inputs inherently follow a temporal sequence. The recently proposed Multimodal Compact Bilinear pooling (MCB) forms the outer products, via count-sketch approximation, of the visual and textual representation at each spatial location. While this procedure preserves spatial information locally, outer-products are taken independently for each fiber of the activation tensor, and therefore do not include spatial context. In this work, we introduce multi-dimensional sketch ({MD-sketch}), a novel extension of count-sketch to tensors. Using this new formulation, we propose Multimodal Compact Tensor Pooling (MCT) to fully exploit the global spatial context during bilinear pooling operations. Contrarily to MCB, our approach preserves spatial context by directly convolving the MD-sketch from the visual tensor features with the text vector feature using higher order FFT. Furthermore we apply MCT incrementally at each step of the question embedding and accumulate the multi-modal vectors with a second LSTM layer before the final answer is chosen

    An introduction to spectral distances in networks (extended version)

    Full text link
    Many functions have been recently defined to assess the similarity among networks as tools for quantitative comparison. They stem from very different frameworks - and they are tuned for dealing with different situations. Here we show an overview of the spectral distances, highlighting their behavior in some basic cases of static and dynamic synthetic and real networks

    Question Type Guided Attention in Visual Question Answering

    Get PDF
    Visual Question Answering (VQA) requires integration of feature maps with drastically different structures and focus of the correct regions. Image descriptors have structures at multiple spatial scales, while lexical inputs inherently follow a temporal sequence and naturally cluster into semantically different question types. A lot of previous works use complex models to extract feature representations but neglect to use high-level information summary such as question types in learning. In this work, we propose Question Type-guided Attention (QTA). It utilizes the information of question type to dynamically balance between bottom-up and top-down visual features, respectively extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA architectures with extensive input ablation studies over the TDIUC dataset and show that QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset. By adding QTA on the state-of-art model MCB, we achieve 3% improvement for overall accuracy. Finally, we propose a multi-task extension to predict question types which generalizes QTA to applications that lack of question type, with minimal performance loss
    • …
    corecore