46 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The effect of multi-walled carbon nanotubes-additive in physicochemical property of rice brand methyl ester: Optimization analysis

    Full text link
    © 2019 by the authors. Biodiesel as an alternative to diesel fuel produced from vegetable oils or animal fats has attracted more and more attention because it is renewable and environmentally friendly. Compared to conventional diesel fuel, biodiesel has slightly lower performance in engine combustion due to the lower calorific value that leads to lower power generated. This study investigates the effect of multi-walled carbon nanotubes (MWCNTs) as an additive to the rice bran methyl ester (RBME). Artificial neural network (ANN) and response surface methodology (RSM) was used for predicting the calorific value. The interaction effects of parameters such as dosage of MWCNTs, size of MWCNTs and reaction time on the calorific value of RBME were studied. Comparison of RSM and ANN performance was evaluated based on the correlation coefficient (R2), the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the average absolute deviation (AAD) showed that the ANN model had better performance (R2 = 0.9808, RMSE = 0.0164, MAPE = 0.0017, AAD = 0.173) compare to RSM (R2 = 0.9746, RMSE = 0.0170, MAPE = 0.0028, AAD = 0.279). The optimum predicted of RBME calorific value that is generated using the cuckoo search (CS) via lévy flight optimization algorithm is 41.78 (MJ/kg). The optimum value was obtained using 64 ppm of < 7 nm MWCNTs blending for 60 min. The predicted calorific value was validated experimentally as 41.05 MJ/kg. Furthermore, the experimental results have shown that the addition of MWCNTs was significantly increased the calorific value from 36.87 MJ/kg to 41.05 MJ/kg (11.6%). Also, the addition of MWCNTs decreased flashpoint (−18.3%) and acid value (−0.52%). As a conclusion, adding MWCNTs as an additive had improved the physicochemical properties characteristics of RBME. To our best knowledge, no research has yet been performed on the effect of multi-walled carbon nanotubes-additive in physicochemical property of rice brand methyl ester application so far

    A review of advances in magnetorheological dampers: their design optimization and applications

    No full text
    © 2017, Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature. In recent years, magnetorheological (MR) fluid technology has received much attention and consequently has shown much improvement. Its adaptable nature has led to rapid growth in such varied engineering applications as the base isolation of civil structures, vehicle suspensions, and several bio-engineering mechanisms through its implementation in different MR fluid base devices, particularly in MR dampers. The MR damper is an advanced application of a semi-active device which performs effectively in vibration reduction due to its control ability in both on and off states. The MR damper has the capacity to generate a large damping force, with comparatively low power consumption, fast and flexible response, and simplicity of design. With reference to the huge demand for MR dampers, this paper reviews the advantages of these semi-active systems over passive and active systems, the versatile application of MR dampers, and the fabrication of the configurations of various MR dampers, and provides an overview of various MR damper models. To address the increasing adaptability of the MR dampers, their latest design optimization and advances are also presented. Because of the tremendous interest in self-powered and energy-saving technologies, a broad overview of the design of MR dampers for energy harvesting and their modeling is also incorporated in this paper

    Review on design factors of microbial fuel cells using Buckingham's Pi Theorem

    Full text link
    © 2020 Elsevier Ltd Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. Involvement of various disciplines had been contributing to enhance the performance of the MFCs. Factors affecting the performance such as chemical components, bacteria species, electrodes materials, flow interaction and electrical parts are being widely reviewed, however most of the research are highly field-specific without considering other important variables from different disciplines. In this study, Buckingham's Pi Theorem has been utilized to be implemented in the design pattern of MFCs. Several dominated variables of interest have also been pointed out including the design limitation. Modelling and application of Buckingham's Pi Theorem has been discussed as well which is useful for performance enhancement of MFCs and their application in wastewater treatment in the future

    An integrated fluid-structure interaction and thrombosis model for type B aortic dissection

    No full text
    False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behaviour which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid-structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection-diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealised dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighbouring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young’s modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25 % larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer towards simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion

    Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections

    No full text
    Pseudomonas aeruginosa is often implicated in burn wound infections; its inherent drug resistance often renders these infections extremely challenging to treat. This is further compounded by the problem of emerging drug resistance and the dearth of novel antimicrobial drug discovery in recent years. In the perennial search for effective antimicrobial compounds, the authors identify short synthetic β-sheet folding peptides, IRIKIRIK (IK8L), IRIkIrIK (IK8-2D), and irikirik (IK8D) as prime candidates owing to their high potency against Gram-negative bacteria. In this study, the peptides are first assayed against 20 clinically isolated multidrug-resistant P. aeruginosa strains in comparison with the conventional antibiotics imipenem and ceftazidime, and IK8L is demonstrated to be the most effective. IK8L also exhibits superior antibacterial killing kinetics compared to imipenem and ceftazidime. From transmission electron microscopy, confocal microscopy, and protein release analyses, IK8L shows membrane-lytic antimicrobial mechanism. Repeated use of IK8L does not induce drug resistance, while the bacteria develop resistance against the antibiotics after several times of treatment at sublethal doses. Analysis of mouse blood serum chemistry reveals that peptide does not induce systemic toxicity. The potential utility of IK8L in the in vivo treatment of P. aeruginosa-infected burn wounds is further demonstrated in a mouse model
    corecore